Sanders, S. 125 questions: Exploration and Discovery (Science/AAAS Customized Publishing Workplace, 2021).
Tao, P. et al. Photo voltaic-driven interfacial evaporation. Nat. Vitality 3, 1031–1041 (2018).
Shen, Q. et al. Liquid metal-based comfortable, airtight, and wireless-communicable seals for stretchable programs. Science 379, 488–493 (2023).
Hao, M., Li, J., Park, S., Moura, S. & Dames, C. Environment friendly thermal administration of Li-ion batteries with a passive interfacial thermal regulator primarily based on a form reminiscence alloy. Nat. Vitality 3, 899–906 (2018).
Li, M. et al. Electrically gated molecular thermal change. Science 382, 585–589 (2023).
Jones, N. The best way to cease information centres from gobbling up the world’s electrical energy. Nature 561, 163–166 (2018).
Masanet, E., Shehabi, A., Lei, N., Smith, S. & Koomey, J. Recalibrating international information middle energy-use estimates. Science 367, 984–986 (2020).
Meijer, G. I. Cooling energy-hungry information facilities. Science 328, 318–319 (2010).
Van Erp, R., Soleimanzadeh, R., Nela, L., Kampitsis, G. & Matioli, E. Co-designing electronics with microfluidics for extra sustainable cooling. Nature 585, 211–216 (2020).
Dhillon, N. S., Buongiorno, J. & Varanasi, Ok. Ok. Important warmth flux maxima throughout boiling disaster on textured surfaces. Nat. Commun. 6, 8247 (2015).
Li, W., Yang, S., Chen, Y., Li, C. & Wang, Z. Tesla valves and capillary structures-activated thermal regulator. Nat. Commun. 14, 3996 (2023).
Jiang, M. et al. Inhibiting the Leidenfrost impact above 1,000 °C for sustained thermal cooling. Nature 601, 568–572 (2022).
Murshed, S. S. Superior Cooling Applied sciences and Functions (Books on Demand, 2019).
Ohashi, H. et al. Energy electronics innovation with subsequent era superior energy units. IEICE Trans. Commun. 87, 3422–3429 (2004).
Moore, A. L. & Shi, L. Rising challenges and supplies for thermal administration of electronics. Mater. Right now 17, 163–174 (2014).
Kang, J. S., Li, M., Wu, H., Nguyen, H. & Hu, Y. Experimental statement of excessive thermal conductivity in boron arsenide. Science 361, 575–578 (2018).
Tian, F. et al. Uncommon excessive thermal conductivity in boron arsenide bulk crystals. Science 361, 582–585 (2018).
Cai, Q. et al. Excessive thermal conductivity of high-quality monolayer boron nitride and its thermal growth. Sci. Adv. 5, eaav0129 (2019).
Chen, Ok. et al. Ultrahigh thermal conductivity in isotope-enriched cubic boron nitride. Science 367, 555–559 (2020).
Chen, J., Xu, X., Zhou, J. & Li, B. Interfacial thermal resistance: previous, current, and future. Rev. Mod. Phys. 94, 025002 (2022).
Kang, J. S. et al. Integration of boron arsenide cooling substrates into gallium nitride units. Nat. Electron. 4, 416–423 (2021).
Cui, Y., Qin, Z., Wu, H., Li, M. & Hu, Y. Versatile thermal interface primarily based on self-assembled boron arsenide for high-performance thermal administration. Nat. Commun. 12, 1284 (2021).
Kaur, S., Raravikar, N., Helms, B. A., Prasher, R. & Ogletree, D. F. Enhanced thermal transport at covalently functionalized carbon nanotube array interfaces. Nat. Commun. 5, 3082 (2014).
Dow Chemical Firm. DOWSIL™ TC-5026 Thermally Conductive Compound Technical Knowledge Sheet 1-3. Dow https://www.dow.com/en-us/pdp.dowsil-tc-5026-thermally-conductive-compound.04063597z.html#tech-content (2017).
Wang, M. et al. Wafer-scale switch of vertically aligned carbon nanotube arrays. J. Am. Chem. Soc. 136, 18156–18162 (2014).
Wang, H. et al. Liquid metallic composites with enhanced thermal conductivity and stability utilizing molecular thermal linker. Adv. Mater. 33, 2103104 (2021).
Balandin, A. A. Thermal properties of graphene and nanostructured carbon supplies. Nat. Mater. 10, 569–581 (2011).
Singh, V. et al. Excessive thermal conductivity of chain-oriented amorphous polythiophene. Nat. Nanotechnol. 9, 384–390 (2014).
Xu, Y. et al. Nanostructured polymer movies with metal-like thermal conductivity. Nat. Commun. 10, 1771 (2019).
Chen, S., Wang, H.-Z., Zhao, R.-Q., Rao, W. & Liu, J. Liquid metallic composites. Matter 2, 1446–1480 (2020).
Bartlett, M. D. et al. Excessive thermal conductivity in comfortable elastomers with elongated liquid metallic inclusions. Proc. Natl Acad. Sci. USA 114, 2143–2148 (2017).
Wang, C. et al. A normal method to composites containing nonmetallic fillers and liquid gallium. Sci. Adv. 7, eabe3767 (2021).
Kong, W. et al. Oxide‐mediated formation of chemically secure tungsten–liquid metallic mixtures for enhanced thermal interfaces. Adv. Mater. 31, 1904309 (2019).
Ge, Z., Cahill, D. G. & Braun, P. V. Thermal conductance of hydrophilic and hydrophobic interfaces. Phys. Rev. Lett. 96, 186101 (2006).
Tian, Z., Marconnet, A. & Chen, G. Enhancing stable–liquid interface thermal transport utilizing self-assembled monolayers. Appl. Phys. Lett. 106, 211602 (2015).
Harikrishna, H., Ducker, W. A. & Huxtable, S. T. The affect of interface bonding on thermal transport via stable–liquid interfaces. Appl. Phys. Lett. 102, 251606 (2013).
Bruggeman, V. D. Berechnung verschiedener physikalischer Konstanten von heterogenen Substanzen. I. Dielektrizitätskonstanten und Leitfähigkeiten der Mischkörper aus isotropen Substanzen. Ann. Phys. 416, 636–664 (1935).
Nan, C.-W., Birringer, R., Clarke, D. R. & Gleiter, H. Efficient thermal conductivity of particulate composites with interfacial thermal resistance. J. Appl. Phys. 81, 6692–6699 (1997).
Khan, M. R., Eaker, C. B., Bowden, E. F. & Dickey, M. D. Large and switchable floor exercise of liquid metallic by way of floor oxidation. Proc. Natl Acad. Sci. USA 111, 14047–14051 (2014).
Lawrenz, F. et al. Morphology, mechanical stability, and protecting properties of ultrathin gallium oxide coatings. Langmuir 31, 5836–5842 (2015).
Sarkar, S., Gupta, R., Roy, T., Ganguly, R. & Megaridis, C. M. Evaluate of jet impingement cooling of digital units: rising position of floor engineering. Int. J. Warmth. Mass Transf. 206, 123888 (2023).