Sunday, December 15, 2024
HomeNanotechnologyMechanochemistry-mediated colloidal liquid metals for digital system cooling at kilowatt ranges

Mechanochemistry-mediated colloidal liquid metals for digital system cooling at kilowatt ranges


  • Sanders, S. 125 questions: Exploration and Discovery (Science/AAAS Customized Publishing Workplace, 2021).

  • Tao, P. et al. Photo voltaic-driven interfacial evaporation. Nat. Vitality 3, 1031–1041 (2018).

    Article 

    Google Scholar
     

  • Shen, Q. et al. Liquid metal-based comfortable, airtight, and wireless-communicable seals for stretchable programs. Science 379, 488–493 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hao, M., Li, J., Park, S., Moura, S. & Dames, C. Environment friendly thermal administration of Li-ion batteries with a passive interfacial thermal regulator primarily based on a form reminiscence alloy. Nat. Vitality 3, 899–906 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Li, M. et al. Electrically gated molecular thermal change. Science 382, 585–589 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jones, N. The best way to cease information centres from gobbling up the world’s electrical energy. Nature 561, 163–166 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Masanet, E., Shehabi, A., Lei, N., Smith, S. & Koomey, J. Recalibrating international information middle energy-use estimates. Science 367, 984–986 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Meijer, G. I. Cooling energy-hungry information facilities. Science 328, 318–319 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Van Erp, R., Soleimanzadeh, R., Nela, L., Kampitsis, G. & Matioli, E. Co-designing electronics with microfluidics for extra sustainable cooling. Nature 585, 211–216 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Dhillon, N. S., Buongiorno, J. & Varanasi, Ok. Ok. Important warmth flux maxima throughout boiling disaster on textured surfaces. Nat. Commun. 6, 8247 (2015).

    Article 
    PubMed 

    Google Scholar
     

  • Li, W., Yang, S., Chen, Y., Li, C. & Wang, Z. Tesla valves and capillary structures-activated thermal regulator. Nat. Commun. 14, 3996 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jiang, M. et al. Inhibiting the Leidenfrost impact above 1,000 °C for sustained thermal cooling. Nature 601, 568–572 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Murshed, S. S. Superior Cooling Applied sciences and Functions (Books on Demand, 2019).

  • Ohashi, H. et al. Energy electronics innovation with subsequent era superior energy units. IEICE Trans. Commun. 87, 3422–3429 (2004).


    Google Scholar
     

  • Moore, A. L. & Shi, L. Rising challenges and supplies for thermal administration of electronics. Mater. Right now 17, 163–174 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Kang, J. S., Li, M., Wu, H., Nguyen, H. & Hu, Y. Experimental statement of excessive thermal conductivity in boron arsenide. Science 361, 575–578 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tian, F. et al. Uncommon excessive thermal conductivity in boron arsenide bulk crystals. Science 361, 582–585 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cai, Q. et al. Excessive thermal conductivity of high-quality monolayer boron nitride and its thermal growth. Sci. Adv. 5, eaav0129 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen, Ok. et al. Ultrahigh thermal conductivity in isotope-enriched cubic boron nitride. Science 367, 555–559 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chen, J., Xu, X., Zhou, J. & Li, B. Interfacial thermal resistance: previous, current, and future. Rev. Mod. Phys. 94, 025002 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Kang, J. S. et al. Integration of boron arsenide cooling substrates into gallium nitride units. Nat. Electron. 4, 416–423 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Cui, Y., Qin, Z., Wu, H., Li, M. & Hu, Y. Versatile thermal interface primarily based on self-assembled boron arsenide for high-performance thermal administration. Nat. Commun. 12, 1284 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kaur, S., Raravikar, N., Helms, B. A., Prasher, R. & Ogletree, D. F. Enhanced thermal transport at covalently functionalized carbon nanotube array interfaces. Nat. Commun. 5, 3082 (2014).

    Article 
    PubMed 

    Google Scholar
     

  • Dow Chemical Firm. DOWSIL™ TC-5026 Thermally Conductive Compound Technical Knowledge Sheet 1-3. Dow https://www.dow.com/en-us/pdp.dowsil-tc-5026-thermally-conductive-compound.04063597z.html#tech-content (2017).

  • Wang, M. et al. Wafer-scale switch of vertically aligned carbon nanotube arrays. J. Am. Chem. Soc. 136, 18156–18162 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang, H. et al. Liquid metallic composites with enhanced thermal conductivity and stability utilizing molecular thermal linker. Adv. Mater. 33, 2103104 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Balandin, A. A. Thermal properties of graphene and nanostructured carbon supplies. Nat. Mater. 10, 569–581 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Singh, V. et al. Excessive thermal conductivity of chain-oriented amorphous polythiophene. Nat. Nanotechnol. 9, 384–390 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Xu, Y. et al. Nanostructured polymer movies with metal-like thermal conductivity. Nat. Commun. 10, 1771 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen, S., Wang, H.-Z., Zhao, R.-Q., Rao, W. & Liu, J. Liquid metallic composites. Matter 2, 1446–1480 (2020).

    Article 

    Google Scholar
     

  • Bartlett, M. D. et al. Excessive thermal conductivity in comfortable elastomers with elongated liquid metallic inclusions. Proc. Natl Acad. Sci. USA 114, 2143–2148 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang, C. et al. A normal method to composites containing nonmetallic fillers and liquid gallium. Sci. Adv. 7, eabe3767 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kong, W. et al. Oxide‐mediated formation of chemically secure tungsten–liquid metallic mixtures for enhanced thermal interfaces. Adv. Mater. 31, 1904309 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Ge, Z., Cahill, D. G. & Braun, P. V. Thermal conductance of hydrophilic and hydrophobic interfaces. Phys. Rev. Lett. 96, 186101 (2006).

    Article 
    PubMed 

    Google Scholar
     

  • Tian, Z., Marconnet, A. & Chen, G. Enhancing stable–liquid interface thermal transport utilizing self-assembled monolayers. Appl. Phys. Lett. 106, 211602 (2015).

    Article 

    Google Scholar
     

  • Harikrishna, H., Ducker, W. A. & Huxtable, S. T. The affect of interface bonding on thermal transport via stable–liquid interfaces. Appl. Phys. Lett. 102, 251606 (2013).

    Article 

    Google Scholar
     

  • Bruggeman, V. D. Berechnung verschiedener physikalischer Konstanten von heterogenen Substanzen. I. Dielektrizitätskonstanten und Leitfähigkeiten der Mischkörper aus isotropen Substanzen. Ann. Phys. 416, 636–664 (1935).

    Article 

    Google Scholar
     

  • Nan, C.-W., Birringer, R., Clarke, D. R. & Gleiter, H. Efficient thermal conductivity of particulate composites with interfacial thermal resistance. J. Appl. Phys. 81, 6692–6699 (1997).

    Article 
    CAS 

    Google Scholar
     

  • Khan, M. R., Eaker, C. B., Bowden, E. F. & Dickey, M. D. Large and switchable floor exercise of liquid metallic by way of floor oxidation. Proc. Natl Acad. Sci. USA 111, 14047–14051 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lawrenz, F. et al. Morphology, mechanical stability, and protecting properties of ultrathin gallium oxide coatings. Langmuir 31, 5836–5842 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sarkar, S., Gupta, R., Roy, T., Ganguly, R. & Megaridis, C. M. Evaluate of jet impingement cooling of digital units: rising position of floor engineering. Int. J. Warmth. Mass Transf. 206, 123888 (2023).

    Article 
    CAS 

    Google Scholar
     

  • RELATED ARTICLES

    LEAVE A REPLY

    Please enter your comment!
    Please enter your name here

    Most Popular

    Recent Comments