Sunday, December 15, 2024
HomeNanotechnologyNon-discriminating engineered masking of immuno-evasive ligands on tumour-derived extracellular vesicles enhances tumour...

Non-discriminating engineered masking of immuno-evasive ligands on tumour-derived extracellular vesicles enhances tumour vaccination outcomes


  • Hilf, N. et al. Actively customized vaccination trial for newly identified glioblastoma. Nature 565, 240–245 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chen, L. et al. Bacterial cytoplasmic membranes synergistically improve the antitumor exercise of autologous most cancers vaccines. Sci. Transl. Med. 13, eabc2816 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Möller, A. & Lobb, R. J. The evolving translational potential of small extracellular vesicles in most cancers. Nat. Rev. Most cancers 20, 697–709 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Xu, R. et al. Extracellular vesicles in cancer-implications for future enhancements in most cancers care. Nat. Rev. Clin. Oncol. 15, 617–638 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Buzas, E. I. The roles of extracellular vesicles within the immune system. Nat. Rev. Immunol. 23, 236–250 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kalluri, R. & LeBleu, V. S. The biology, perform, and biomedical purposes of exosomes. Science 367, eaau6977 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang, S. et al. Macrophage-tumor chimeric exosomes accumulate in lymph node and tumor to activate the immune response and the tumor microenvironment. Sci. Transl. Med. 13, eabb6981 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Xi, X. et al. Self-healing microcapsules synergetically modulate immunization microenvironments for potent most cancers vaccination. Sci. Adv. 6, eaay7735 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rao, L. et al. Hybrid mobile membrane nanovesicles amplify macrophage immune responses towards most cancers recurrence and metastasis. Nat. Commun. 11, 4909 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shimizu, A. et al. Exosomal CD47 performs a necessary position in immune evasion in ovarian most cancers. Mol. Most cancers Res. 19, 1583–1595 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sockolosky, J. T. et al. Sturdy antitumor responses to CD47 blockade require adaptive immune stimulation. Proc. Natl Acad. Sci. USA 113, E2646–E2654 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Vonderheide, R. H. CD47 blockade as one other immune checkpoint remedy for most cancers. Nat. Med. 21, 1122–1123 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wilschut, J., Duezguenes, N. & Papahadjopoulos, D. Calcium/magnesium specificity in membrane fusion: kinetics of aggregation and fusion of phosphatidylserine vesicles and the position of bilayer curvature. Biochemistry 20, 3126–3133 (1981).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhu, L. et al. In vitro choice of extremely environment friendly G-quadruplex-based DNAzymes. Anal. Chem. 84, 8383–8390 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kong, D. M., Xu, J. & Shen, H. X. Constructive results of ATP on G-Quadruplex-hemin DNAzyme-mediated reactions. Anal. Chem. 82, 6148–6153 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bhuyan, S. Okay. et al. Directed evolution of a G-quadruplex peroxidase DNAzyme and utility in proteomic DNAzyme-aptamer proximity labeling. J. Am. Chem. Soc. 145, 12726–12736 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Veglia, F. et al. Lipid our bodies containing oxidatively truncated lipids block antigen cross-presentation by dendritic cells in most cancers. Nat. Commun. 8, 2122 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jhunjhunwala, S., Hammer, C. & Delamarre, L. Antigen presentation in most cancers: insights into tumour immunogenicity and immune evasion. Nat. Rev. Most cancers 21, 298–312 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Feng, M. et al. Phagocytosis checkpoints as new targets for most cancers immunotherapy. Nat. Rev. Most cancers 19, 568–586 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen, Y. C., Shi, W., Shi, J. J. & Lu, J. J. Progress of CD47 immune checkpoint blockade brokers in anticancer remedy: a hematotoxic perspective. J. Most cancers Res. Clin. Oncol. 148, 1–14 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lu, Y. et al. Immunological conversion of strong tumours utilizing a bispecific nanobioconjugate for most cancers immunotherapy. Nat. Nanotech 17, 1332–1341 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Hauser, A. Okay. et al. Focused iron oxide nanoparticles for the enhancement of radiation remedy. Biomaterials 105, 127–135 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mulens-Arias, V., Rojas, J. M., Pérez-Yagüe, S., Morales, M. P. & Barber, D. F. Barber polyethylenimine-coated SPIONs set off macrophage activation by TLR-4 signaling and ROS manufacturing and modulate podosome dynamics. Biomaterials 52, 494–506 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Batool, F. et al. Biologically synthesized iron nanoparticles (FeNPs) from Phoenix dactylifera have anti-bacterial actions. Sci. Rep. 11, 22132–22140 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jiang, S. et al. Synergistic anticancer remedy by ovalbumin encapsulation‐enabled tandem reactive oxygen species era. Angew. Chem. Int. Ed. Engl. 59, 20008–20016 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Joffre, O. P., Segura, E., Savina, A. & Amigorena, S. Cross-presentation by dendritic cells. Nat. Rev. Immunol. 12, 557–569 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mantegazza, A. R. et al. NADPH oxidase controls phagosomal pH and antigen cross-presentation in human dendritic cells. Blood 112, 4712–4722 (2008).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Savina, A. et al. NOX2 controls phagosomal pH to control antigen processing throughout cross presentation by dendritic cells. Cell 126, 205–218 (2006).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kitai, Y. et al. DNA-containing exosomes derived from most cancers cells handled with topotecan activate a STING-dependent pathway and reinforce antitumor immunity. J. Immunol. 198, 1649–1659 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang, H. et al. Cell-free tumor microparticle vaccines stimulate dendritic cells by way of cGAS/STING signaling tumor cell-derived microparticles as vaccine. Most cancers Immunol. Res. 3, 196–205 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Voets, E. et al. Useful characterization of the selective pan-allele anti-SIRPα antibody ADU-1805 that blocks the SIRPα-CD47 innate immune checkpoint. J. Immunother. Most cancers 7, 340–354 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sikic, B. I. et al. First-in-human, first-in-class section I trial of the anti-CD47 antibody hu5F9-G4 in sufferers with superior cancers. J. Clin. Oncol. 37, 946–953 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • DeNardo, D. G. & Ruffell, B. Macrophages as regulators of tumour immunity and immunotherapy. Nat. Rev. Immunol. 19, 369–382 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Vitale, I., Shema, E., Loi, S. & Galluzzi, L. Intratumoral heterogeneity in most cancers development and response to immunotherapy. Nat. Med. 27, 212–224 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Vitale, I., Manic, G., Coussens, L. M., Kroemer, G. & Galluzzi, L. Macrophages and metabolism within the tumor microenvironment. Cell. Metab. 30, 36–50 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gu, Z. et al. Mechanism of iron oxide-induced macrophage activation:tThe impression of composition and the underlying signaling pathway. J. Am. Chem. Soc. 141, 6122–6126 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang, Y. et al. ROS play a important position within the differentiation of alternatively activated macrophages and the incidence of tumor-associated macrophages. Cell Res. 23, 898–914 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gao, Y. et al. Methotrexate-loaded tumour-cell-derived microvesicles can relieve biliary obstruction in sufferers with extrahepatic cholangiocarcinoma. Nat. Biomed. Eng. 4, 743–753 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bangert, C. et al. Persistence of mature dendritic cells, TH2A, and Tc2 cells characterize clinically resolved atopic dermatitis below IL-4Rα blockade. Sci. Immunol. 6, eabe2749 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Woller, N. et al. Virus-induced tumor irritation facilitates efficient DC most cancers immunotherapy in a Treg-dependent method in mice. J. Clin. Make investments. 121, 2570–2582 (2011).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu, Y. et al. Intrapleural nano-immunotherapy promotes innate and adaptive immune responses to boost anti-PD-L1 remedy for malignant pleural effusion. Nat. Nanotechnol. 17, 206–216 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bard, M. P. et al. Proteomic evaluation of exosomes remoted from human malignant pleural effusions. Am. J. Respir. Cell Mol. Biol. 31, 114–121 (2004).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chen, G. et al. Exosomal PD-L1 contributes to immunosuppression and is related to anti-PD-1 response. Nature 560, 382–386 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xian, Y. et al. Controllable meeting of enzymes for multiplexed lab-on-a-Chip bioassays with a tunable detection vary. Angew. Chem. Int. Ed. 130, 7625–7629 (2018).

    Article 

    Google Scholar
     

  • Tian, F., Chao, L., Deng, J. & Solar, J. Microfluidic separation, detection, and engineering of extracellular vesicles for most cancers diagnostics and drug supply. Acc. Mater. Res. 3, 498–510 (2022).

    Article 
    CAS 

    Google Scholar
     

  • RELATED ARTICLES

    LEAVE A REPLY

    Please enter your comment!
    Please enter your name here

    Most Popular

    Recent Comments