Sicking M, Falke I, Löblein MT, Eich HT, Götte M, Greve B, et al. The Musashi RNA-binding proteins in feminine cancers: insights on molecular mechanisms and therapeutic relevance. Biomark Res. 2023;11(1):76.
Ye F, Dewanjee S, Li Y, Jha NK, Chen Z-S, Kumar A, et al. Developments in scientific features of focused remedy and immunotherapy in breast most cancers. Mol Most cancers. 2023;22(1):105.
Singh D, Assaraf YG, Gacche RN. Lengthy non-coding RNA mediated drug resistance in breast most cancers. Drug Resist Updates. 2022;63:100851.
Chellappan DK, Chellian J, Ng ZY, Sim YJ, Theng CW, Ling J, et al. The function of pazopanib on tumour angiogenesis and within the administration of cancers: a evaluation. Biomed Pharmacother. 2017;96:768–81.
Harris PA, Stafford JA. Discovery of Pazopanib: a Pan Vascular endothelial progress issue kinase inhibitor. 2009:57–77.
Van Swearingen AED, Sambade MJ, Siegel MB, Sud S, McNeill RS, Bevill SM, et al. Mixed kinase inhibitors of MEK1/2 and both PI3K or PDGFR are efficacious in intracranial triple-negative breast most cancers. Neurooncology. 2017;19(11):1481–93.
Cheng FT-F, Ou-Yang F, Lapke N, Tung Okay-C, Chen Y-Okay, Chou Y-Y, et al. Pazopanib Sensitivity in a affected person with breast Most cancers and FGFR1 amplification. J Natl Compr Canc Netw. 2017;15(12):1456–9.
Cristofanilli M, Johnston SRD, Manikhas A, Gomez HL, Gladkov O, Shao Z, et al. A randomized part II examine of lapatinib + pazopanib versus lapatinib in sufferers with HER2 + inflammatory breast most cancers. Breast Most cancers Res Deal with. 2012;137(2):471–82.
Tan AR, Johannes H, Rastogi P, Jacobs SA, Robidoux A, Flynn PJ, et al. Weekly paclitaxel and concurrent pazopanib following doxorubicin and cyclophosphamide as neoadjuvant remedy for HER-negative regionally superior breast most cancers: NSABP Basis FB-6, a part II examine. Breast Most cancers Res Deal with. 2014;149(1):163–9.
Xu D, Guo D, Zhang J, Tan X, Deng Z, Hou X, et al. Revolutionary tumor interstitial fluid-triggered carbon dot-docetaxel nanoassemblies for focused drug supply and imaging of HER2-positive breast most cancers. Int J Pharm. 2024;657:124145.
Ma W, Zhao Q, Zhu S, Wang X, Zhang C, Ma D, et al. Development of glutathione-responsive paclitaxel prodrug nanoparticles for image-guided focused supply and breast most cancers remedy. RSC Adv. 2024;14(18):12796–806.
Li X, Yu Y, Chen Q, Lin J, Zhu X, Liu X, et al. Engineering most cancers cell membrane-camouflaged steel complicated for environment friendly focusing on remedy of breast most cancers. J Nanobiotechnol. 2022;20(1):401.
Zhang X, Lu Y, Jia D, Qiu W, Ma X, Zhang X, et al. Acidic microenvironment responsive polymeric MOF-based nanoparticles induce immunogenic cell dying for mixed most cancers remedy. J Nanobiotechnol. 2021;19(1):455.
Zhou Y, Chen D, Xue G, Yu S, Yuan C, Huang M, et al. Improved therapeutic efficacy of quercetin-loaded polymeric nanoparticles on triple-negative breast most cancers by inhibiting uPA. RSC Adv. 2020;10(57):34517–26.
Yang J, Dai D, Zhang X, Teng L, Ma L, Yang Y-W. Multifunctional metal-organic framework (MOF)-based nanoplatforms for most cancers remedy: from single to mixture remedy. Theranostics. 2023;13(1):295–323.
Khan S, Cho WC, Sepahvand A, Haji Hosseinali S, Hussain A, Nejadi Babadaei MM, et al. Electrochemical aptasensor based mostly on the engineered core-shell MOF nanostructures for the detection of tumor antigens. J Nanobiotechnol. 2023;21(1):136.
Zheng Y, Zhang X, Su Z. Design of steel–natural framework composites in anti-cancer therapies. Nanoscale. 2021;13(28):12102–18.
Zhu R, Cai M, Fu T, Yin D, Peng H, Liao S, et al. Fe-Primarily based Steel Natural frameworks (Fe-MOFs) for bio-related purposes. Pharmaceutics. 2023;15(6):1599.
Leng X, Dong X, Wang W, Sai N, Yang C, You L, et al. Biocompatible Fe-Primarily based Micropore Steel-Natural frameworks as sustained-release Anticancer Drug Carriers. Molecules. 2018;23(10):2490.
Li LG, Yang XX, Xu HZ, Yu TT, Li QR, Hu J, et al. A dihydroartemisinin-loaded Nanoreactor motivates anti‐Most cancers immunotherapy by Synergy‐Induced Ferroptosis to Activate Cgas/STING for Reprogramming of Macrophage. Adv Healthc Mater. 2023;12(28):e2301561.
Yan Y, Yang X, Han N, Liu Y, Liang Q, Li L-G, et al. Steel-organic framework-encapsulated dihydroartemisinin nanoparticles induces apoptotic cell dying in ovarian most cancers by blocking ROMO1-mediated ROS manufacturing. J Nanobiotechnol. 2023;21(1):204.
Bao W, Liu M, Meng J, Liu S, Wang S, Jia R, et al. MOFs-based nanoagent allows twin mitochondrial injury in synergistic antitumor remedy by way of oxidative stress and calcium overload. Nat Commun. 2021;12(1):6399.
Liang X, Mu M, Chen B, Fan R, Chen H, Zou B, et al. Steel-organic framework-based photodynamic mixed immunotherapy in opposition to the distant growth of triple-negative breast most cancers. Biomaterials Res. 2023;27(1):120.
Zhang PF, Fu JJ, Hu J, You QJ, Yao XY, Hua D, et al. Evoking and enhancing ferroptosis of most cancers stem cells by a liver-targeted and metal-organic framework-based drug supply system inhibits the expansion and lung metastasis of hepatocellular carcinoma. Chem Eng J. 2023;454:140044.
Xu Z, Chen X, Music L, Yuan F, Yan Y. Matrix Transforming-Related protein 8 as a Novel Indicator contributing to Glioma Immune response by regulating Ferroptosis. Entrance Immunol. 2022;13:834595.
Chen J, Zhu Y, Kaskel S. Porphyrin-based steel–Natural frameworks for Biomedical Purposes. Angew Chem Int Ed. 2020;60(10):5010–35.
Tsoi KM, MacParland SA, Ma X-Z, Spetzler VN, Echeverri J, Ouyang B, et al. Mechanism of hard-nanomaterial clearance by the liver. Nat Mater. 2016;15(11):1212–21.
Schwenck J, Sonanini D, Cotton JM, Rammensee H-G, la Fougère C, Zender L, et al. Advances in PET imaging of most cancers. Nat Rev Most cancers. 2023;23(7):474–90.
Zhu Okay, Jiang D, Wang Okay, Zheng D, Zhu Z, Shao F, et al. Conductive nanocomposite hydrogel and mesenchymal stem cells for the remedy of myocardial infarction and non-invasive monitoring by way of PET/CT. J Nanobiotechnol. 2022;20(1):211.
Li J, Diamante G, Ahn IS, Wijaya D, Wang X, Chang CH, et al. Willpower of the nanoparticle- and cell-specific toxicological mechanisms in 3D liver spheroids utilizing scRNAseq evaluation. Nano At the moment. 2022;47:101652.
Hoffmann AD, Weinberg SE, Swaminathan S, Chaudhuri S, Almubarak HF, Schipma MJ, et al. Distinctive molecular signatures sustained in circulating monocytes and regulatory T cells in convalescent COVID-19 sufferers. Clin Immunol. 2023;252:109634.
Tsuboi H, Segawa S, Yagishita M, Toko H, Honda F, Kitada A, et al. Activation mechanisms of monocytes/macrophages in adult-onset nonetheless illness. Entrance Immunol. 2022;13:953730.
Tang Y, Zhang Y, Li X, Xu R, Ji Y, Liu J, et al. Immune panorama and the important thing function of APOE + monocytes of lupus nephritis underneath the single-cell and spatial transcriptional vista. Clin Translational Med. 2023;13(4):e1237.
Thiel FG, Asgarbeik S, Glaubitz J, Wilden A, Lerch MM, Weiss FU, et al. IRAK3-mediated suppression of pro-inflammatory MyD88/IRAK signaling impacts illness severity in acute pancreatitis. Sci Rep. 2023;13(1):10833.
Xie L, Zhang S, Huang L, Peng Z, Lu H, He Q, et al. Single-cell RNA sequencing of peripheral blood reveals that monocytes with excessive cathepsin S expression irritate cerebral ischemia–reperfusion harm. Mind Behav Immun. 2023;107:330–44.
Schweigert O, Adler J, Längst N, Aïssi D, Duque Escobar J, Tong T, et al. CRIP1 expression in monocytes associated to hypertension. Clin Sci. 2021;135(7):911–24.
Zhou Okay, Han J, Wang Y, Xu Y, Zhang Y, Zhu C. The therapeutic potential of bone marrow-derived macrophages in neurological ailments. CNS Neurosci Ther. 2022;28(12):1942–52.
Hu Y, Paris S, Sahoo N, Bertolet G, Wang Q, Wang Q, et al. Nanoparticle-enhanced proton beam immunoradiotherapy drives immune activation and sturdy tumor rejection. JCI Perception. 2023;8(12):e167749.
Lu C-e, Levey RE, Ghersi G, Schueller N, Liebscher S, Layland SL, et al. Monitoring the macrophage response in direction of biomaterial implants utilizing label-free imaging. Mater At the moment Bio. 2023;21:100696.
Mei F, Guo Y, Wang Y, Zhou Y, Heng BC, Xie M et al. Matrix stiffness regulates macrophage polarisation by way of the Piezo1-YAP signalling axis. Cell Prolif. 2024:e13640.
Müller AK, Köhler UA, Trzebanski S, Vinik Y, Raj HM, Girault JA, et al. Mouse modeling dissecting macrophage–breast Most cancers Communication uncovered roles of PYK2 in macrophage recruitment and breast tumorigenesis. Adv Sci. 2022;9(9):e2105696.
Liu L, Yang L, Yan W, Zhai J, Pizzo DP, Chu P, et al. Chemotherapy induces breast Most cancers Stemness in Affiliation with Dysregulated Monocytosis. Clin Most cancers Res. 2018;24(10):2370–82.
Thomson CA, McColl A, Graham GJ, Cavanagh J. Sustained publicity to systemic endotoxin triggers chemokine induction within the mind adopted by a fast inflow of leukocytes. J Neuroinflamm. 2020;17(1):94.
Petry F, Botto M, Holtappels R, Walport MJ, Loos M. Reconstitution of the complement operate in C1q-Poor (C1qa–/–) mice with wild-type bone marrow cells. J Immunol. 2001;167(7):4033–7.
Cha YJ, Kim EY, Choi YJ, Kim CY, Park MK, Chang YS. Accumulation of plasmacytoid dendritic cell is related to a remedy response to DNA-damaging remedy and favorable prognosis in lung adenocarcinoma. Entrance Immunol. 2023;14:1154881.
Heymann D, Pe KCS, Saetung R, Yodsurang V, Chaotham C, Suppipat Okay, et al. Triple-negative breast most cancers influences a blended M1/M2 macrophage phenotype related to tumor aggressiveness. PLoS ONE. 2022;17(8):e0273044.
Luo L, Wang S, Hu Y, Wang L, Jiang X, Zhang J, et al. Exactly regulating M2 subtype macrophages for Renal Fibrosis Decision. ACS Nano. 2023;17(22):22508–26.
Lee T-H, Yeh C-F, Lee Y-T, Shih Y-C, Chen Y-T, Hung C-T, et al. Fibroblast-enriched endoplasmic reticulum protein TXNDC5 promotes pulmonary fibrosis by augmenting TGFβ signaling by means of TGFBR1 stabilization. Nat Commun. 2020;11(1):4254.
Arabpour M, Saghazadeh A, Rezaei N. Anti-inflammatory and M2 macrophage polarization-promoting impact of mesenchymal stem cell-derived exosomes. Int Immunopharmacol. 2021;97:107823.
Reasoner DK, Warner DS, Todd MM, McAllister A. Results of Nitrous Oxide on cerebral metabolic price in rats anaesthetized with isoflurane †. Br J Anaesth. 1990;65(2):210–5.
Li Y, Chen C, Liu HL, Li CG, Zhang ZF, Wang CL. Pazopanib restricts small cell lung most cancers proliferation by way of reactive oxygen species-mediated endoplasmic reticulum stress. Thorac Most cancers. 2022;13(17):2421–8.
Cheng B, Xie M, Zhou Y, Li T, Liu W, Yu W, et al. Vascular mimicry induced by m6A mediated IGFL2-AS1/AR axis contributes to pazopanib resistance in clear cell renal cell carcinoma. Cell Dying Discovery. 2023;9(1):121.
Gril B, Palmieri D, Qian Y, Anwar T, Liewehr DJ, Steinberg SM, et al. Pazopanib inhibits the activation of PDGFRβ-Expressing astrocytes within the mind metastatic microenvironment of breast Most cancers cells. Am J Pathol. 2013;182(6):2368–79.
Petrikaite V, D’Avanzo N, Celia C, Fresta M. Nanocarriers overcoming organic limitations induced by multidrug resistance of chemotherapeutics in 2D and 3D most cancers fashions. Drug Resist Updates. 2023;68:100956.
Yu X, Jia S, Yu S, Chen Y, Zhang C, Chen H, et al. Latest advances in melittin-based nanoparticles for antitumor remedy: from mechanisms to focused supply methods. J Nanobiotechnol. 2023;21(1):454.
Shinde A, Panchal Okay, Patra P, Singh S, Enakolla S, Paliwal R, et al. QbD enabled growth and analysis of Pazopanib Loaded nanoliposomes for PDAC Therapy. AAPS PharmSciTech. 2024;25(5):97.
Hamarat Şanlıer Ş, Ak G, Yılmaz H, Ünal A, Bozkaya ÜF, Tanıyan G, et al. Improvement of Ultrasound-Triggered and magnetic-targeted Nanobubble System for Twin-Drug Supply. J Pharm Sci. 2019;108(3):1272–83.
Nadaf SJ, Killedar SG, Kumbar VM, Bhagwat DA, Gurav SS. Pazopanib-laden lipid based mostly nanovesicular supply with augmented oral bioavailability and therapeutic efficacy in opposition to non-small cell lung most cancers. Int J Pharm. 2022;628:122287.
Hadiloo Okay, Taremi S, Heidari M, Esmaeilzadeh A. The CAR macrophage cells, a novel era of chimeric antigen-based strategy in opposition to strong tumors. Biomark Res. 2023;11(1):103.
Bai Y, Zhang X, Zhou J, Guo J, Liu Y, Liang C, et al. A2aR on lung adenocarcinoma cells: a novel goal for most cancers remedy by way of recruiting and regulating tumor-associated macrophages. Chemico-Biol Work together. 2023;382:110543.
Liu Y, Wang X, Zhu Y, Cao Y, Wang L, Li F, et al. The CTCF/LncRNA-PACERR complicated recruits E1A binding protein p300 to induce professional‐tumour macrophages in pancreatic ductal adenocarcinoma by way of immediately regulating PTGS2 expression. Clin Translational Med. 2022;12(2):e654.
Silva KMR, França DCH, de Queiroz AA, Fagundes-Triches DLG, de Marchi PGF, Morais TC, et al. Polarization of melatonin-modulated Colostrum macrophages within the Presence of breast tumor cell traces. Int J Mol Sci. 2023;24(15):12400.
Ding H, Zhang Y, Mao Y, Li Y, Shen Y, Sheng J, et al. Modulation of macrophage polarization by iron-based nanoparticles. Med Rev. 2023;3(2):105–22.
Su Y, Yang F, Chen L, Cheung PCK. Mushroom carboxymethylated β-d-Glucan features as a macrophage-targeting provider for Iron Oxide nanoparticles and an inducer of Proinflammatory Macrophage polarization for Immunotherapy. J Agric Meals Chem. 2022;70(23):7110–21.
Ou D-L, Liao Z-X, Kempson IM, Li L, Yang P-C, Tseng SJ. Nano-modified viruses prime the tumor microenvironment and promote the photodynamic virotherapy in liver most cancers. J Biomed Sci. 2024;31(1):1.
Liu X, Wang M, Jiang Y, Zhang X, Shi C, Zeng F, et al. Magnetic resonance imaging nanoprobe quantifies nitric oxide for evaluating M1/M2 macrophage polarization and prognosis of Most cancers therapies. ACS Nano. 2023;17(24):24854–66.