Klitzing, Okay. V., Dorda, G. & Pepper, M. New technique for high-accuracy willpower of the fine-structure fixed primarily based on quantized Corridor resistance. Phys. Rev. Lett. 45, 494–497 (1980).
Tsui, D. C., Stormer, H. L. & Gossard, A. C. Two-dimensional magnetotransport within the excessive quantum restrict. Phys. Rev. Lett. 48, 1559–1562 (1982).
Novoselov, Okay. S. et al. Two-dimensional gasoline of massless Dirac fermions in graphene. Nature 438, 197–200 (2005).
Zhang, Y., Tan, Y.-W., Stormer, H. L. & Kim, P. Experimental remark of the quantum Corridor impact and Berry’s part in graphene. Nature 438, 201–204 (2005).
Tsukazaki, A. et al. Quantum Corridor impact in polar oxide heterostructures. Science 315, 1388–1391 (2007).
Chang, C.-Z. et al. Experimental remark of the quantum anomalous Corridor impact in a magnetic topological insulator. Science 340, 167–170 (2013).
Li, L. et al. Quantum Corridor impact in black phosphorus two-dimensional electron system. Nat. Nanotechnol. 11, 593–597 (2016).
Matsubara, Y. et al. Remark of the quantum Corridor impact in δ-doped SrTiO3. Nat. Commun. 7, 11631 (2016).
Bandurin, D. A. et al. Excessive electron mobility, quantum Corridor impact and anomalous optical response in atomically skinny InSe. Nat. Nanotechnol. 12, 223–227 (2017).
Movva, H. C. P. et al. Density-dependent quantum Corridor states and Zeeman splitting in monolayer and bilayer WSe2. Phys. Rev. Lett. 118, 247701 (2017).
Xu, S. et al. Odd-integer quantum Corridor states and large spin susceptibility in p-type few-layer WSe2. Phys. Rev. Lett. 118, 067702 (2017).
Yang, J. et al. Integer and fractional quantum Corridor impact in ultrahigh high quality few-layer black phosphorus transistors. Nano Lett. 18, 229–234 (2018).
Qiu, G. et al. Quantum Corridor impact of Weyl fermions in n-type semiconducting tellurene. Nat. Nanotechnol. 15, 585–591 (2020).
Sheng, F. et al. Rashba valleys and quantum Corridor states in few-layer black arsenic. Nature 593, 56–60 (2021).
Bolotin, Okay. I., Ghahari, F., Shulman, M. D., Stormer, H. L. & Kim, P. Remark of the fractional quantum Corridor impact in graphene. Nature 462, 196–199 (2009).
Du, X., Skachko, I., Duerr, F., Luican, A. & Andrei, E. Y. Fractional quantum Corridor impact and insulating part of Dirac electrons in graphene. Nature 462, 192–195 (2009).
Li, L. et al. Quantum oscillations in a two-dimensional electron gasoline in black phosphorus skinny movies. Nat. Nanotechnol. 10, 608–613 (2015).
Fallahazad, B. et al. Shubnikov–de Haas oscillations of high-mobility holes in monolayer and bilayer WSe2: Landau degree degeneracy, efficient mass, and destructive compressibility. Phys. Rev. Lett. 116, 086601 (2016).
Pisoni, R. et al. Interactions and magnetotransport by spin-valley coupled Landau ranges in monolayer MoS2. Phys. Rev. Lett. 121, 247701 (2018).
Suzuki, R. et al. Valley-dependent spin polarization in bulk MoS2 with damaged inversion symmetry. Nat. Nanotechnol. 9, 611–617 (2014).
Du, L. et al. Engineering symmetry breaking in 2D layered supplies. Nat. Rev. Phys. 3, 193–206 (2021).
Zhang, X., Liu, Q., Luo, J.-W., Freeman, A. J. & Zunger, A. Hidden spin polarization in inversion-symmetric bulk crystals. Nat. Phys. 10, 387–393 (2014).
Wu, J. et al. Excessive electron mobility and quantum oscillations in non-encapsulated ultrathin semiconducting Bi2O2Se. Nat. Nanotechnol. 12, 530–534 (2017).
Wang, F. et al. Phonon signatures for polaron formation in an anharmonic semiconductor. Proc. Natl Acad. Sci. USA 119, e2122436119 (2022).
Tan, C. et al. 2D fin field-effect transistors built-in with epitaxial high-ok gate oxide. Nature 616, 66–72 (2023).
Yu, A. B. & Rashba, E. I. Oscillatory results and the magnetic susceptibility of carriers in inversion layers. J. Phys. C: Stable State Phys. 17, 6039 (1984).
Luo, J., Munekata, H., Fang, F. F. & Stiles, P. J. Remark of the zero-field spin splitting of the bottom electron subband in GaSb-InAs-GaSb quantum wells. Phys. Rev. B 38, 10142–10145 (1988).
Nitta, J., Akazaki, T., Takayanagi, H. & Enoki, T. Gate management of spin-orbit interplay in an inverted In0.53Ga0.47As/In0.52Al0.48As heterostructure. Phys. Rev. Lett. 78, 1335–1338 (1997).
Murakawa, H. et al. Detection of Berry’s part in a bulk Rashba semiconductor. Science 342, 1490–1493 (2013).
Shcherbakov, D. et al. Layer- and gate-tunable spin-orbit coupling in a high-mobility few-layer semiconductor. Sci. Adv. 7, eabe2892 (2021).
Bihlmayer, G., Noël, P., Vyalikh, D. V., Chulkov, E. V. & Manchon, A. Rashba-like physics in condensed matter. Nat. Rev. Phys. 4, 642–659 (2022).
Liang, Y. et al. Molecular beam epitaxy and digital construction of atomically skinny oxyselenide movies. Adv. Mater. 31, 1901964 (2019).
Zhou, X. et al. Step-climbing epitaxy of layered supplies with large out-of-plane lattice mismatch. Adv. Mater. 34, 2202754 (2022).
Baugher, B. W. H., Churchill, H. O. H., Yang, Y. & Jarillo-Herrero, P. Intrinsic digital transport properties of high-quality monolayer and bilayer MoS2. Nano Lett. 13, 4212–4216 (2013).
Neal, A. T., Liu, H., Gu, J. & Ye, P. D. Magneto-transport in MoS2: part coherence, spin–orbit scattering, and the Corridor issue. ACS Nano 7, 7077–7082 (2013).
Radisavljevic, B. & Kis, A. Mobility engineering and a metallic–insulator transition in monolayer MoS2. Nat. Mater. 12, 815–820 (2013).
Li, L. et al. Quick and lengthy pulse excessive magnetic subject facility on the Wuhan Nationwide Excessive Magnetic Subject Heart. IEEE Trans. Appl. Supercond. 24, 9500404 (2014).
Xie, J. et al. Realisation of the reconfigurable pulsed excessive magnetic subject facility and its scientific utility at Wuhan Nationwide Pulsed Excessive Magnetic Subject Centre. Excessive Voltage 8, 898–906 (2023).
Tan, C. et al. Pressure-free layered semiconductors for 2D transistors with on-state present density exceeding 1.3 mA μm–1. Nano Lett. 22, 3770–3776 (2022).
Zhang, C. et al. Single-crystalline van der Waals layered dielectric with excessive dielectric fixed. Nat. Mater. 22, 832–837 (2023).
Luo, J., Munekata, H., Fang, F. F. & Stiles, P. J. Results of inversion asymmetry on electron vitality band buildings in GaSb/InAs/GaSb quantum wells. Phys. Rev. B 41, 7685–7693 (1990).
Schäpers, T. et al. Impact of the heterointerface on the spin splitting in modulation doped InxGa1−xAs/InP quantum wells for B→0. J. Appl. Phys. 83, 4324–4333 (1998).
Schmult, S. et al. Giant Bychkov-Rashba spin-orbit coupling in high-mobility GaN/AlxGa1–xN heterostructures. Phys. Rev. B 74, 033302 (2006).
Caviglia, A. D. et al. Tunable Rashba spin-orbit interplay at oxide interfaces. Phys. Rev. Lett. 104, 126803 (2010).
Fête, A. et al. Giant modulation of the Shubnikov–de Haas oscillations by the Rashba interplay on the LaAlO3/SrTiO3 interface. New J. Phys. 16, 112002 (2014).
Veit, M. J., Arras, R., Ramshaw, B. J., Pentcheva, R. & Suzuki, Y. Nonzero Berry part in quantum oscillations from large Rashba-type spin splitting in LaTiO3/SrTiO3 heterostructures. Nat. Commun. 9, 1458 (2018).
Murakami, S., Nagaosa, N. & Zhang, S.-C. Dissipationless quantum spin present at room temperature. Science 301, 1348–1351 (2003).
Sinova, J. et al. Common intrinsic spin Corridor impact. Phys. Rev. Lett. 92, 126603 (2004).
Xiao, D., Chang, M.-C. & Niu, Q. Berry part results on digital properties. Rev. Mod. Phys. 82, 1959–2007 (2010).
Ganichev, S. D. et al. Spin-galvanic impact. Nature 417, 153–156 (2002).
Chappert, C., Fert, A. & Van Dau, F. N. The emergence of spin electronics in information storage. Nat. Mater. 6, 813–823 (2007).
Mihai Miron, I. et al. Present-driven spin torque induced by the Rashba impact in a ferromagnetic metallic layer. Nat. Mater. 9, 230–234 (2010).
Kaplan, D., Stern, A. & Yan, B. Even integer quantum Corridor impact in supplies with hidden spin texture. Preprint at https://arxiv.org/abs/2406.03448 (2024).
Su, W. P., Schrieffer, J. R. & Heeger, A. J. Solitons in polyacetylene. Phys. Rev. Lett. 42, 1698–1701 (1979).
Wu, J. et al. Chemical patterning of high-mobility semiconducting 2D Bi2O2Se crystals for built-in optoelectronic gadgets. Adv. Mater. 29, 1704060 (2017).