Thursday, September 11, 2025
HomeNanotechnologyExerting pulling forces in fluids by directional disassembly of microcrystalline fibres

Exerting pulling forces in fluids by directional disassembly of microcrystalline fibres


  • Zwaag, Dvan & Meijer, E. W. Fueling connections between chemistry and biology. Science 349, 1056–1057 (2015).

    Article 
    PubMed 

    Google Scholar
     

  • Howard, J. & Hyman, A. A. Dynamics and mechanics of the microtubule plus finish. Nature 422, 753–758 (2003).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hürtgen, D., Vogel, S. Okay. & Schwille, P. Cytoskeletal and actin‐based mostly polymerization motors and their position in minimal cell design. Adv. Biosyst. 3, e1800311 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Lubbe, A. S., Wezenberg, S. J. & Feringa, B. L. Synthetic microtubules burst with power. Proc. Natl Acad. Sci. USA 114, 11804–11805 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fredy, J. W. et al. Molecular photoswitches mediating the strain-driven disassembly of supramolecular tubules. Proc. Natl Acad. Sci. USA 114, 11850–11855 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Krieg, E., Bastings, M. M., Besenius, P. & Rybtchinski, B. Supramolecular polymers in aqueous media. Chem. Rev. 116, 2414–2477 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cleary, J. M. & Hancock, W. O. Molecular mechanisms underlying microtubule development dynamics. Curr. Biol. 31, R560–R573 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Akhmanova, A., Stehbens, S. J. & Yap, A. S. Contact, grasp, ship and management: useful cross‐speak between microtubules and cell adhesions. Site visitors 10, 268–274 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • van der Zwaag, D., de Greef, T. F. & Meijer, E. W. Programmable supramolecular polymerizations. Angew. Chem. Int. Ed. 54, 8334–8336 (2015).

    Article 

    Google Scholar
     

  • Levin, A. et al. Elastic instability-mediated actuation by a supra-molecular polymer. Nat. Phys. 12, 926–930 (2016).

    Article 

    Google Scholar
     

  • Fu, M. et al. Disassembly of dipeptide single crystals can rework the lipid membrane right into a community. ACS Nano 11, 7349–7354 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cera, L. et al. PolyWhips: directional particle transport by gradient‐directed development and stiffening of supramolecular assemblies. Adv. Mater. 29, 1604430 (2016).

  • Theriot, J. A. The polymerization motor. Site visitors 1, 19–28 (2000).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Asbury, C. L., Gestaut, D. R., Powers, A. F., Franck, A. D. & Davis, T. N. The DAM1 kinetochore advanced harnesses microtubule dynamics to supply power and motion. Proc. Natl Acad. Sci. USA 103, 9873–9878 (2006).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Powers, A. et al. The Ndc80 kinetochore advanced varieties load-bearing attachments to dynamic microtubule ideas through biased diffusion. Cell 136, 865–875 (2009).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Footer, M. J., Kerssemakers, J. W., Theriot, J. A. & Dogterom, M. Direct measurement of power technology by actin filament polymerization utilizing an optical entice. Proc. Natl Acad. Sci. USA 104, 2181–2186 (2007).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hill, T. L. Theoretical issues associated to the attachment of microtubules to kinetochores. Proc. Natl Acad. Sci. USA 82, 4404–4408 (1985).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Asbury, C. L., Tien, J. F. & Davis, T. N. Kinetochores’ gripping feat: conformational wave or biased diffusion? Developments Cell Biol. 21, 38–46 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Huang, Z. et al. Pulsating tubules from noncovalent macrocycles. Science 337, 1521–1526 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ryu, J.-H., Oh, N.-Okay. & Lee, M. Tubular meeting of amphiphilic inflexible macrocycle with versatile dendrons. Chem. Commun. 1770–1772 (2005).

  • Kim, H. et al. Self‐dissociating tubules from helical stacking of noncovalent macrocycles. Angew. Chem. Int. Ed. 49, 8471–8475 (2010).

    Article 
    CAS 

    Google Scholar
     

  • Frisch, H. & Besenius, P. pH‐switchable self‐assembled supplies. Macromol. Fast Commun. 36, 346–363 (2014).

    Article 
    PubMed 

    Google Scholar
     

  • Wang, G. & Liu, S. Methods to assemble a chemical‐gasoline‐pushed self‐meeting. ChemSystemsChem 2, e1900046 (2020).

  • Boekhoven, J., Hendriksen, W. E., Koper, G. J., Eelkema, R. & van Esch, J. H. Transient meeting of energetic supplies fueled by a chemical response. Science 349, 1075–1079 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • van Ravensteijn, B. G., Hendriksen, W. E., Eelkema, R., van Esch, J. H. & Kegel, W. Okay. Gas-mediated transient clustering of colloidal constructing blocks. J. Am. Chem. Soc. 139, 9763–9766 (2017).

    Article 
    PubMed 

    Google Scholar
     

  • Tena-Solsona, M. et al. Non-equilibrium dissipative supramolecular supplies with a tunable lifetime. Nat. Commun. 8, 15895 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Grötsch, R. Okay. et al. Pathway dependence within the fuel-driven dissipative self-assembly of nanoparticles. J. Am. Chem. Soc. 141, 9872–9878 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Grötsch, R. Okay. et al. Dissipative self‐meeting of photoluminescent silicon nanocrystals. Angew. Chem. Int. Ed. 57, 14608–14612 (2018).

    Article 

    Google Scholar
     

  • Heuser, T., Steppert, A.-Okay., Molano Lopez, C., Zhu, B. & Walther, A. Generic idea to program the time area of self-assemblies with a self-regulation mechanism. Nano Lett. 15, 2213–2219 (2014).

    Article 
    PubMed 

    Google Scholar
     

  • Carlson, E. J., Riel, A. M. & Dahl, B. J. Donor–acceptor biaryl lactones: pH induced molecular switches with intramolecular cost switch modulation. Tetrahedron Lett. 53, 6245–6249 (2012).

    Article 
    CAS 

    Google Scholar
     

  • Sorrenti, A., Leira-Iglesias, J., Markvoort, A. J., de Greef, T. F. & Hermans, T. M. Non-equilibrium supramolecular polymerization. Chem. Soc. Rev. 46, 5476–5490 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang, Y., Huang, Z., Kim, Y., He, Y. & Lee, M. Visitor-driven inflation of self-assembled nanofibers via hole channel formation. J. Am. Chem. Soc. 136, 16152–16155 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Vogel, E. & Kiefer, W. Investigation of the steel adsorbate interface of the system silver coumarin and silver hydrocoumarin by way of floor enhanced Raman spectroscopy. Fresenius J. Anal. Chem. 361, 628–630 (1998).

    Article 
    CAS 

    Google Scholar
     

  • Moriyama, T. et al. Polarization Raman imaging of natural monolayer islands for crystal orientation evaluation. ACS Omega 6, 9520–9527 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ji, X. et al. Reactivity triggered by an natural microcrystal interface: a case examine involving an environmentally benign, fragrant boric acid response. Chem. Commun. 56, 11114–11117 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Kumar, D., Thipparaboina, R., Sreedhar, B. & Shastri, N. R. The position of floor chemistry in crystal morphology and its related properties. CrystEngComm 17, 6646–6650 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Miller, D. D. & Chuang, S. S. C. Management of CO2 adsorption and desorption utilizing polyethylene glycol in a tetraethylenepentamine skinny movie: an in situ ATR and theoretical examine. J. Phys. Chem. C 120, 25489–25504 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Perl, A. et al. Gradient-driven movement of multivalent ligand molecules alongside a floor functionalized with a number of receptors. Nat. Chem. 3, 317–322 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Vanossi, A., Manini, N., Urbakh, M., Zapperi, S. & Tosatti, E. Modeling friction: from nanoscale to mesoscale. Rev. Mod. Phys. 85, 529–552 (2013).

    Article 
    CAS 

    Google Scholar
     

  • Bormuth, V., Varga, V., Howard, J. & Schäffer, E. Protein friction limits diffusive and directed actions of kinesin motors on microtubules. Science 325, 870–873 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wen, H., Morris, Okay. R. & Park, Okay. Hydrogen bonding interactions between adsorbed polymer molecules and crystal floor of acetaminophen. J. Colloid Interface Sci. 290, 325–335 (2005).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Poornachary, S. Okay. et al. Anisotropic crystal development inhibition by polymeric components: affect on modulation of naproxen crystal form and dimension. Cryst. Progress Des. 17, 4844–4854 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Li, Z., Fan, Q. & Yin, Y. Colloidal self-assembly approaches to sensible nanostructured supplies. Chem. Rev. 122, 4976–5067 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Sather, N. A. et al. 3D printing of supramolecular polymer hydrogels with hierarchical construction. Small 17, e2005743 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Xi, Y. & Pozzo, L. D. Electrical discipline directed formation of aligned conjugated polymer fibers. Mushy Matter 13, 3894–3908 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Altomare, A. et al. EXPO2013: a equipment of instruments for phasing crystal constructions from powder knowledge. J. Appl. Crystallogr. 46, 1231–1235 (2013).

    Article 
    CAS 

    Google Scholar
     

  • Vanlier, J. et al. lumicks/pylake: v1.4.0. Zenodo https://doi.org/10.5281/zenodo.10723300 (2024).

  • Florin, E.-L., Pralle, A., Stelzer, E. H. Okay. & Hörber, J. Okay. H. Photonic power microscope calibration by thermal noise evaluation. Appl. Phys. A 66, S75–S78 (1998).

  • Neese, F. The ORCA program system. WIREs Comput. Mol. Sci. 2, 73–78 (2011).

    Article 

    Google Scholar
     

  • Becke, A. D. Density-functional thermochemistry. III. The position of actual change. J. Chem. Phys. 98, 5648–5652 (1993).

    Article 
    CAS 

    Google Scholar
     

  • Lee, C., Yang, W. & Parr, R. G. Growth of the Colle-Salvetti correlation-energy method right into a useful of the electron density. Phys. Rev. B 37, 785–789 (1988).

    Article 
    CAS 

    Google Scholar
     

  • Vosko, S. H., Wilk, L. & Nusair, M. Correct spin-dependent electron liquid correlation energies for native spin density calculations: a essential evaluation. Can. J. Phys. 58, 1200–1211 (1980).

    Article 
    CAS 

    Google Scholar
     

  • Stephens, P. J., Devlin, F. J., Chabalowski, C. F. & Frisch, M. J. Ab initio calculation of vibrational absorption and round dichroism spectra utilizing density useful power fields. J. Phys. Chem. 98, 11623–11627 (1994).

    Article 
    CAS 

    Google Scholar
     

  • Weigend, F. & Ahlrichs, R. Balanced foundation units of break up valence, triple zeta valence and quadruple zeta valence high quality for H to Rn: design and evaluation of accuracy. Phys. Chem. Chem. Phys. 7, 3297 (2005).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Grimme, S., Ehrlich, S. & Goerigk, L. Impact of the damping operate in dispersion corrected density useful concept. J. Comput. Chem. 32, 1456–1465 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Grimme, S., Antony, J., Ehrlich, S. & Krieg, H. A constant and correct ab initio parametrization of density useful dispersion correction (DFT-D) for the 94 components H-Pu. J. Chem. Phys. 132, 154104 (2010).

    Article 
    PubMed 

    Google Scholar
     

  • Neese, F., Wennmohs, F., Hansen, A. & Becker, U. Environment friendly, approximate and parallel Hartree–Fock and hybrid DFT calculations. A ‘chain-of-spheres’ algorithm for the Hartree–Fock change. Chem. Phys. 356, 98–109 (2009).

    Article 
    CAS 

    Google Scholar
     

  • Weigend, F. Correct Coulomb-fitting foundation units for H to Rn. Phys. Chem. Chem. Phys. 8, 1057 (2006).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • RELATED ARTICLES

    LEAVE A REPLY

    Please enter your comment!
    Please enter your name here

    Most Popular

    Recent Comments