Tenchov, R., Sasso, J. M. & Zhou, Q. A. PEGylated lipid nanoparticle formulations: immunological security and effectivity perspective. Bioconjug. Chem. 34, 941–960 (2023).
Müller, S. S. et al. Biodegradable hyperbranched polyether–lipids with in-chain pH-sensitive linkages. Polym. Chem. 7, 6257–6268 (2016).
Kedmi, R., Ben-Arie, N. & Peer, D. The systemic toxicity of positively charged lipid nanoparticles and the function of Toll-like receptor 4 in immune activation. Biomaterials 31, 6867–6875 (2010).
Huotari, J. & Helenius, A. Endosome maturation. EMBO J. 30, 3481–3500 (2011).
Gao, W., Chan, J. M. & Farokhzad, O. C. pH-Responsive nanoparticles for drug supply. Mol. Pharm. 7, 1913–1920 (2010).
Zhuo, S. et al. pH-sensitive biomaterials for drug supply. Molecules 25, 5649 (2020).
Shin, J., Shum, P. & Thompson, D. H. Acid-triggered launch through dePEGylation of DOPE liposomes containing acid-labile vinyl ether PEG-lipids. J. Management. Launch 91, 187–200 (2003).
Guo, X. & Szoka, F. C. Steric stabilization of fusogenic liposomes by a low-pH delicate PEG-diortho ester–lipid conjugate. Bioconjug. Chem. 12, 291–300 (2000).
Jayaraman, M. et al. Maximizing the efficiency of siRNA lipid nanoparticles for hepatic gene silencing in vivo. Angew. Chem. Int. Ed. 51, 8529–8533 (2012).
Zhang, Y., Solar, C., Wang, C., Jankovic, Okay. E. & Dong, Y. Lipids and lipid derivatives for RNA supply. Chem. Rev. 121, 12181–12277 (2021).
Roise, J. J. et al. Acid-sensitive surfactants improve the supply of nucleic acids. Mol. Pharm. 19, 67–79 (2022).
Yang, X. et al. Making sensible medication smarter: the significance of linker chemistry in focused drug supply. Med. Res. Rev. 40, 2682–2713 (2020).
Liu, B. & Thayumanavan, S. S. Substituent results on the pH sensitivity of acetals and ketals and their correlation with encapsulation stability in polymeric nanogels. J. Am. Chem. Soc. 139, 2306–2317 (2017).
Hansch, C., Leo, A. & Taft, R. W. A survey of Hammett substituent constants and resonance and discipline parameters. Chem. Rev. 91, 165–195 (1991).
Takahata, Y. & Chong, D. P. Estimation of Hammett sigma constants of substituted benzenes by means of correct density-functional calculation of core–electron binding vitality shifts. Int. J. Quantum Chem. 103, 509–515 (2005).
Waggoner, L. E., Miyasaki, Okay. F. & Kwon, E. J. Evaluation of PEG-lipid anchor size on lipid nanoparticle pharmacokinetics and exercise in a mouse mannequin of traumatic mind damage. Biomater. Sci. 11, 4238–4253 (2023).
Kim, J. et al. Engineering lipid nanoparticles for enhanced intracellular supply of mRNA by means of inhalation. ACS Nano 16, 14792–14806 (2022).
Lokugamage, M. P. et al. Optimization of lipid nanoparticles for the supply of nebulized therapeutic mRNA to the lungs. Nat. Biomed. Eng. 5, 1059–1068 (2021).
Coelho, F., Salonen, L. M. & Silva, B. F. B. Hemiacetal-linked pH-sensitive PEG-lipids for non-viral gene supply. N. J. Chem. 46, 15414–15422 (2022).
Fang, Y. et al. Cleavable PEGylation: a method for overcoming the “PEG dilemma” in environment friendly drug supply. Drug Deliv. 24, 22–32 (2017).
Kozma, G. T., Shimizu, T., Ishida, T. & Szebeni, J. Anti-PEG antibodies: properties, formation, testing and function in antagonistic immune reactions to PEGylated nano-biopharmaceuticals. Adv. Drug Deliv. Rev. 154-155, 163–175 (2020).
Wang, H. et al. Polyethylene glycol (PEG)-associated immune responses triggered by clinically related lipid nanoparticles in rats. NPJ Vaccines 8, 169 (2023).
Yanez Arteta, M. et al. Profitable reprogramming of mobile protein manufacturing by means of mRNA delivered by functionalized lipid nanoparticles. Proc. Natl Acad. Sci. USA 115, E3351–E3360 (2018).
Kilchrist, Okay. V. et al. Gal8 visualization of endosome disruption predicts carrier-mediated biologic drug intracellular bioavailability. ACS Nano 13, 1136–1152 (2019).
Schmiderer, L. et al. Environment friendly and non-toxic biomolecule supply to major human hematopoietic stem cells utilizing nanostraws. Proc. Natl Acad. Sci. USA 117, 21267–21273 (2020).
Levetzow, G. V. et al. Nucleofection, an environment friendly non-viral technique to switch genes into human hematopoietic stem and progenitor cells. Stem Cells Dev. 15, 278–285 (2006).
Vhora, I., Lalani, R., Bhatt, P., Patil, S. & Misra, A. Lipid-nucleic acid nanoparticles of novel ionizable lipids for systemic BMP-9 gene supply to bone-marrow mesenchymal stem cells for osteoinduction. Int. J. Pharm. 563, 324–336 (2019).
Shi, D., Toyonaga, S. & Anderson, D. G. In vivo RNA supply to hematopoietic stem and progenitor cells through focused lipid nanoparticles. Nano Lett. 23, 2938–2944 (2023).
Kumar, V. et al. Shielding of lipid nanoparticles for siRNA supply: influence on physicochemical properties, cytokine induction, and efficacy. Mol. Ther. Nucleic Acids 3, e210 (2014).
Sakurai, Y. et al. Environment friendly siRNA supply by lipid nanoparticles modified with a non-standard macrocyclic peptide for EpCAM-targeting. Mol. Pharm. 14, 3290–3298 (2017).
Chander, N., Basha, G., Yan Cheng, M. H., Witzigmann, D. & Cullis, P. R. Lipid nanoparticle mRNA methods containing excessive ranges of sphingomyelin engender greater protein expression in hepatic and extra-hepatic tissues. Mol. Ther. Strategies Clin. Dev. 30, 235–245 (2023).
Ruoslahti, E. Mind extracellular matrix. Glycobiology 6, 489–492 (1996).
Dankovich, T. M. et al. Extracellular matrix reworking by means of endocytosis and resurfacing of Tenascin-R. Nat. Commun. 12, 7129 (2021).
Cheng, Q. et al. Selective organ concentrating on (SORT) nanoparticles for tissue-specific mRNA supply and CRISPR–Cas gene modifying. Nat. Nanotechnol. 15, 313–320 (2020).
LoPresti, S. T., Arral, M. L., Chaudhary, N. & Whitehead, Okay. A. The substitute of helper lipids with charged options in lipid nanoparticles facilitates focused mRNA supply to the spleen and lungs. J. Management. Launch 345, 819–831 (2022).
Frohlich, E. The function of floor cost in mobile uptake and cytotoxicity of medical nanoparticles. Int. J. Nanomed. 7, 5577–5591 (2012).
Hu, M., Zhou, N., Cai, W. & Xu, H. Lysosomal solute and water transport. J. Cell Biol. 221, e202109133 (2022).
Zahid, M. U., Ma, L., Lim, S. J. & Smith, A. M. Single quantum dot monitoring reveals the influence of nanoparticle floor on intracellular state. Nat. Commun. 9, 1830 (2018).
Pei, Y. et al. Synthesis and bioactivity of readily hydrolysable novel cationic lipids for potential lung supply utility of mRNAs. Chem. Phys. Lipids 243, 105178 (2022).
Qiu, M. et al. Lung-selective mRNA supply of artificial lipid nanoparticles for the therapy of pulmonary lymphangioleiomyomatosis. Proc. Natl Acad. Sci. USA 119, e2116271119 (2022).
Li, Q. et al. Engineering caveolae-targeted lipid nanoparticles to ship mRNA to the lungs. ACS Chem. Biol. 15, 830–836 (2020).
Landesman-Milo, D. & Peer, D. Toxicity profiling of a number of frequent RNAi-based nanomedicines: a comparative research. Drug Deliv. Transl. Res. 4, 96–103 (2014).
Sanders, L. M. & Zeisel, S. H. Choline: dietary necessities and function in mind growth. Nutr. As we speak 42, 181–186 (2007).
Gibellini, F. & Smith, T. Okay. The Kennedy pathway—de novo synthesis of phosphatidylethanolamine and phosphatidylcholine. IUBMB Life 62, 414–428 (2010).
Raghu, G., Nyberg, F. & Morgan, G. The epidemiology of interstitial lung illness and its affiliation with lung most cancers. Br. J. Most cancers 91, S3–S10 (2004).
McAleer, J. P. & Kolls, J. Okay. Directing visitors IL‐17 and IL‐22 coordinate pulmonary immune protection. Immunol. Rev. 260, 129–144 (2014).
Muhl, H. et al. IL-22 in tissue-protective remedy. Br. J. Pharmacol. 169, 761–771 (2013).
Mizoguchi, A. et al. Medical significance of IL-22 cascade in IBD. J. Gastroenterol. 53, 465–474 (2018).
Hwang, S., Feng, D. & Gao, B. Interleukin-22 acts as a mitochondrial protector. Theranostics 10, 7836–7840 (2020).