Makris, S. et al. Immune operate and dysfunction are decided by lymphoid tissue efficacy. Dis. Mannequin. Mech. 15, dmm049256 (2022).
Ghorani, E., Swanton, C. & Quezada, S. A. Most cancers cell-intrinsic mechanisms driving acquired immune tolerance. Immunity 56, 2270–2295 (2023).
Wykes, M. N. & Lewin, S. R. Immune checkpoint blockade in infectious ailments. Nat. Rev. Immunol. 18, 91–104 (2018).
Padariya, M. et al. Viruses, most cancers and non-self recognition. Open Biol. 11, 200348 (2021).
Schwille, P. Backside-up artificial biology: engineering in a tinkerer’s world. Science 333, 1252–1254 (2011).
Wimmer, E., Mueller, S., Tumpey, T. M. & Taubenberger, J. Ok. Artificial viruses: a brand new alternative to grasp and stop viral illness. Nat. Biotechnol. 27, 1163–1172 (2009).
Brooks, S. M. & Alper, H. S. Functions, challenges, and wishes for using artificial biology past the lab. Nat. Commun. 12, 1390 (2021).
Voigt, C. A. Artificial biology 2020–2030: six commercially-available merchandise which are altering our world. Nat. Commun. 11, 6379 (2020).
Csepregi, L., Ehling, R. A., Wagner, B. & Reddy, S. T. Immune literacy: studying, writing, and modifying adaptive immunity. iScience 23, 101519 (2020).
Baker, D. J., Arany, Z., Baur, J. A., Epstein, J. A. & June, C. H. CAR T remedy past most cancers: the evolution of a dwelling drug. Nature 619, 707–715 (2023).
Müller, F. et al. CD19 CAR T-cell remedy in autoimmune illness: a case sequence with follow-up. N. Engl. J. Med. 390, 687–700 (2024).
Maldini, C. R., Ellis, G. I. & Riley, J. L. CAR T cells for an infection, autoimmunity and allotransplantation. Nat. Rev. Immunol. 18, 605–616 (2018).
Hamilton, J. R. et al. In vivo human T cell engineering with enveloped supply automobiles. Nat. Biotechnol. https://doi.org/10.1038/s41587-023-02085-z (2024).
Rurik, J. G. et al. CAR T cells produced in vivo to deal with cardiac damage. Science 375, 91–96 (2022).
Parker, Ok. R. et al. Single-cell analyses establish mind mural cells expressing CD19 as potential off-tumor targets for CAR-T immunotherapies. Cell 183, 126–142 (2020).
Irvine, D. J., Maus, M. V., Mooney, D. J. & Wong, W. W. The way forward for engineered immune cell therapies. Science 378, 853–858 (2022).
Cetin, M. et al. T-FINDER: a extremely delicate, pan-HLA platform for practical T cell receptor and ligand discovery. Sci. Adv. 10, eadk3060 (2024).
Zuiani, A. et al. A multivalent mRNA monkeypox virus vaccine (BNT166) protects mice and macaques from orthopoxvirus illness. Cell 187, 1363–1373 (2024).
Rojas, L. A. et al. Customized RNA neoantigen vaccines stimulate T cells in pancreatic most cancers. Nature 618, 144–150 (2023).
Gopfrich, Ok., Platzman, I. & Spatz, J. P. Mastering complexity: in direction of bottom-up building of multifunctional eukaryotic artificial Cells. Traits Biotechnol. 36, 938–951 (2018).
Du, Y. et al. Membrane-anchored DNA nanojunctions allow nearer antigen-presenting cell–T-cell contact in elevated T-cell receptor triggering. Nat. Nanotechnol. 18, 818–827 (2023).
Staufer, O. et al. Artificial virions reveal fatty acid-coupled adaptive immunogenicity of SARS-CoV-2 spike glycoprotein. Nat. Commun. 13, 868 (2022).
Sigl, C. et al. Programmable icosahedral shell system for virus trapping. Nat. Mater. 20, 1281–1289 (2021).
Staufer, O. et al. Backside-up meeting of biomedical related absolutely artificial extracellular vesicles. Sci. Adv. 7, eabg6666 (2021).
Fernandez-Yague, M. A. et al. Analyzing immune response to engineered hydrogels by hierarchical clustering of inflammatory cell subsets. Sci. Adv. 8, eabd8056 (2022).
Parolini, L. et al. Quantity and porosity thermal regulation in lipid mesophases by coupling cell ligands to tender membranes. Nat. Commun. 6, 5948 (2015).
Chan, Y. H., van Lengerich, B. & Boxer, S. G. Results of linker sequences on vesicle fusion mediated by lipid-anchored DNA oligonucleotides. Proc. Natl Acad. Sci. USA 106, 979–984 (2009).
Laksono, B. M., de Vries, R. D., Duprex, W. P. & de Swart, R. L. Measles pathogenesis, immune suppression and animal fashions. Curr. Opin. Virol. 41, 31–37 (2020).
Abraham, L. & Fackler, O. T. HIV-1 Nef: a multifaceted modulator of T cell receptor signaling. Cell Commun. Sign. 10, 39 (2012).
Hu, Y., Duan, Y. & Salaita, Ok. DNA nanotechnology for investigating mechanical signaling within the immune system. Angew. Chem. Int Ed. Engl. 62, e202302967 (2023).
Schoenit, A. et al. Tuning epithelial cell-cell adhesion and collective dynamics with practical DNA-E-cadherin hybrid linkers. Nano Lett. 22, 302–310 (2022).
Imle, A. et al. Experimental and computational analyses reveal that environmental restrictions form HIV-1 unfold in 3D cultures. Nat. Commun. 10, 2144 (2019).
Gallucci, L. et al. Tissue-like environments form practical interactions of HIV-1 with immature dendritic cells. EMBO Rep. 24, e56818 (2023).
Rothemund, P. W. Folding DNA to create nanoscale shapes and patterns. Nature 440, 297–302 (2006).
Göpfrich, Ok. et al. Giant-conductance transmembrane porin created from DNA origami. ACS Nano 10, 8207–8214 (2016).
Zhan, P., Jahnke, Ok., Liu, N. & Göpfrich, Ok. Practical DNA-based cytoskeletons for artificial cells. Nat. Chem. 14, 958–963 (2022).
Veneziano, R. et al. Position of nanoscale antigen group on B-cell activation probed utilizing DNA origami. Nat. Nanotechnol. 15, 716–723 (2020).
Seitz, I. et al. DNA-origami-directed virus capsid polymorphism. Nat. Nanotechnol. 18, 1205–1212 (2023).
Geary, C., Grossi, G., McRae, E. Ok. S., Rothemund, P. W. Ok. & Andersen, E. S. RNA origami design instruments allow cotranscriptional folding of kilobase-sized nanoscaffolds. Nat. Chem. 13, 549–558 (2021).
Becker, J., Fakhiri, J. & Grimm, D. Unbelievable AAV gene remedy vectors and learn how to discover them—random diversification, rational design and machine studying. Pathogens 11, 756 (2022).
Strebinger, D. et al. Cell type-specific supply by modular envelope design. Nat. Commun. 14, 5141 (2023).
Oktay, E. et al. DNA origami presenting the receptor binding area of SARS-CoV-2 elicit sturdy protecting immune response. Commun. Biol. 6, 308 (2023).
Tan, C. L. et al. Prediction of tumor-reactive T cell receptors from scRNA-seq knowledge for personalised T cell remedy. Nat. Biotechnol. https://doi.org/10.1038/s41587-024-02161-y (2024).
Dekkers, J. F. et al. Uncovering the mode of motion of engineered T cells in affected person most cancers organoids. Nat. Biotechnol. 41, 60–69 (2023).
Verbeke, R., Hogan, M. J., Loré, Ok. & Pardi, N. Innate immune mechanisms of mRNA vaccines. Immunity 55, 1993–2005 (2022).
Parhiz, H., Atochina-Vasserman, E. N. & Weissman, D. mRNA-based therapeutics: trying past COVID-19 vaccines. Lancet 403, 1192–1204 (2024).
Wamhoff, E. C. et al. Enhancing antibody responses by multivalent antigen show on thymus-independent DNA origami scaffolds. Nat. Commun. 15, 795 (2024).
Du, R. R. et al. Innate immune stimulation utilizing 3D wireframe DNA origami. ACS Nano 16, 20340–20352 (2022).
Zeng, Y. C. et al. DNA origami vaccine (DoriVac) nanoparticles enhance each humoral and mobile immune responses to infectious ailments. Preprint at bioRxiv https://doi.org/10.1101/2023.12.29.573647 (2024).
Liu, S. et al. A DNA nanodevice-based vaccine for most cancers immunotherapy. Nat. Mater. 20, 421–430 (2021).
Wagenbauer, Ok. F. et al. Programmable multispecific DNA-origami-based T-cell engagers. Nat. Nanotechnol. 18, 1319–1326 (2023).
Arulkumaran, N. et al. DNA nanodevices with selective immune cell interplay and performance. ACS Nano 15, 4394–4404 (2021).
Kern, N., Dong, R., Douglas, S. M., Vale, R. D. & Morrissey, M. A. Tight nanoscale clustering of Fcγ receptors utilizing DNA origami promotes phagocytosis. eLife 10, e68311 (2021).
Solar, Y. et al. DNA origami-based synthetic antigen-presenting cells for adoptive T cell remedy. Sci. Adv. 8, eadd1106 (2022).
Dong, R. et al. DNA origami patterning of artificial T cell receptors reveals spatial management of the sensitivity and kinetics of sign activation. Proc. Natl Acad. Sci. USA 118, e2109057118 (2021).
Wang, D. et al. Enrichment and sensing tumor cells by embedded immunomodulatory DNA hydrogel to inhibit postoperative tumor recurrence. Nat. Commun. 14, 4511 (2023).
Guo, Z. et al. Immunostimulatory DNA hydrogel enhances protecting efficacy of nanotoxoids in opposition to bacterial an infection. Adv. Mater. 35, e2211717 (2023).
Ijäs, H., Hakaste, I., Shen, B., Kostiainen, M. A. & Linko, V. Reconfigurable DNA origami nanocapsule for pH-controlled encapsulation and show of cargo. ACS Nano 13, 5959–5967 (2019).
Zhang, Q. et al. DNA origami as an in vivo drug supply automobile for most cancers remedy. ACS Nano 8, 6633–6643 (2014).
Ma, V. P. et al. The magnitude of LFA-1/ICAM-1 forces fine-tune TCR-triggered T cell activation. Sci. Adv. 8, eabg4485 (2022).
Simoncelli, S. et al. Multi-color molecular visualization of signaling proteins reveals how C-terminal Src kinase nanoclusters regulate T cell receptor activation. Cell Rep. 33, 108523 (2020).
Jo, M. H. et al. Willpower of single-molecule loading fee throughout mechanotransduction in cell adhesion. Science 383, 1374–1379 (2024).
Brockman, J. M. et al. Stay-cell super-resolved PAINT imaging of piconewton mobile traction forces. Nat. Strategies 17, 1018–1024 (2020).
Rosenberg, A. M., Ayres, C. M., Medina-Cucurella, A. V., Whitehead, T. A. & Baker, B. M. Enhanced T cell receptor specificity via framework engineering. Entrance. Immunol. 15, 1345368 (2024).
Abuwatfa, W. H., Pitt, W. G. & Husseini, G. A. Scaffold-based 3D cell tradition fashions in most cancers analysis. J. Biomed. Sci. 31, 7 (2024).
Kumbhojkar, N. et al. Neutrophils bearing adhesive polymer micropatches as a drug-free most cancers immunotherapy. Nat. Biomed. Eng. https://doi.org/10.1038/s41551-024-01180-z (2024).
Kritchevsky, D., Davidson, L. M. & Goodman, G. T. Seasonal variation of serum lipids within the Vervet monkey. Atherosclerosis 68, 151–157 (1987).
Vorselen, D. et al. Microparticle traction pressure microscopy reveals subcellular pressure exertion patterns in immune cell-target interactions. Nat. Commun. 11, 20 (2020).
Wang, J. et al. Profiling the origin, dynamics, and performance of traction pressure in B cell activation. Sci. Sign 11, eaai9192 (2018).
Du, F., Liu, Y. G. & Scott, E. A. Immunotheranostic polymersomes modularly assembled from tetrablock and diblock copolymers with oxidation-responsive fluorescence. Cell Mol. Bioeng. 10, 357–370 (2017).
Hou, X., Zaks, T., Langer, R. & Dong, Y. Lipid nanoparticles for mRNA supply. Nat. Rev. Mater. 6, 1078–1094 (2021).
Kim, M. et al. Micro-engineering and nano-engineering approaches to research tumour ecosystems. Nat. Rev. Most cancers 23, 581–599 (2023).
Straehla, J. P. et al. A predictive microfluidic mannequin of human glioblastoma to evaluate trafficking of blood-brain barrier-penetrant nanoparticles. Proc. Natl Acad. Sci. USA 119, e2118697119 (2022).
Migueles, S. A. et al. HIV vaccines induce CD8+ T cells with low antigen receptor sensitivity. Science 382, 1270–1276 (2023).
Naulaerts, S. et al. Multiomics and spatial mapping characterizes human CD8+ T cell states in most cancers. Sci. Transl. Med. 15, eadd1016 (2023).
Chockley, P. J., Ibanez-Vega, J., Krenciute, G., Talbot, L. J. & Gottschalk, S. Synapse-tuned CARs improve immune cell anti-tumor exercise. Nat. Biotechnol. 41, 1434–1445 (2023).
Yagüe Relimpio, A. et al. Backside-up assembled artificial SARS-CoV-2 miniviruses reveal lipid membrane affinity of omicron variant spike glycoprotein. ACS Nano 17, 23913–23923 (2023).
Macher, M., Platzman, I. & Spatz, J. P. Backside-up meeting of bioinspired, absolutely artificial extracellular vesicles. Strategies Mol. Biol. 2654, 263–276 (2023).
Lipp, C. et al. Microfluidic system combining hydrodynamic and dielectrophoretic trapping for the managed contact between single micro-sized objects and software to adhesion assays. Lab Chip 23, 3593–3602 (2023).
Hernandez Bücher, J. E. et al. Backside-up meeting of target-specific cytotoxic artificial cells. Biomaterials 285, 121522 (2022).
Yang, X. et al. Engineered exosomes as theranostic platforms for most cancers remedy. ACS Biomater. Sci. Eng. 9, 5479–5503 (2023).
Zhang, J. et al. Micropatterned tender hydrogels to check the interaction of receptors and forces in T cell activation. Acta Biomater. 119, 234–246 (2021).
Deeg, J. et al. T cell activation is decided by the variety of introduced antigens. Nano Lett. 13, 5619–5626 (2013).
Jin, W. et al. T cell activation and immune synapse group reply to the microscale mechanics of structured surfaces. Proc. Natl Acad. Sci. USA 116, 19835–19840 (2019).
Tamzalit, F. et al. Interfacial actin protrusions mechanically improve killing by cytotoxic T cells. Sci. Immunol. 4, eaav5445 (2019).
Basu, R. et al. Cytotoxic T cells use mechanical pressure to potentiate goal cell killing. Cell 165, 100–110 (2016).
Deng, W. et al. A twin amplification technique for ultrasensitive electrochemiluminescence immunoassay based mostly on a Pt nanoparticles dotted graphene-carbon nanotubes composite and carbon dots functionalized mesoporous Pt/Fe. Analyst 139, 1713–1720 (2014).
Bošković, F. et al. Simultaneous identification of viruses and viral variants with programmable DNA nanobait. Nat. Nanotechnol. 18, 290–298 (2023).