Friday, September 12, 2025
HomeNanotechnologyBackside-up artificial immunology | Nature Nanotechnology

Backside-up artificial immunology | Nature Nanotechnology


  • Makris, S. et al. Immune operate and dysfunction are decided by lymphoid tissue efficacy. Dis. Mannequin. Mech. 15, dmm049256 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ghorani, E., Swanton, C. & Quezada, S. A. Most cancers cell-intrinsic mechanisms driving acquired immune tolerance. Immunity 56, 2270–2295 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wykes, M. N. & Lewin, S. R. Immune checkpoint blockade in infectious ailments. Nat. Rev. Immunol. 18, 91–104 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Padariya, M. et al. Viruses, most cancers and non-self recognition. Open Biol. 11, 200348 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Schwille, P. Backside-up artificial biology: engineering in a tinkerer’s world. Science 333, 1252–1254 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wimmer, E., Mueller, S., Tumpey, T. M. & Taubenberger, J. Ok. Artificial viruses: a brand new alternative to grasp and stop viral illness. Nat. Biotechnol. 27, 1163–1172 (2009).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Brooks, S. M. & Alper, H. S. Functions, challenges, and wishes for using artificial biology past the lab. Nat. Commun. 12, 1390 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Voigt, C. A. Artificial biology 2020–2030: six commercially-available merchandise which are altering our world. Nat. Commun. 11, 6379 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Csepregi, L., Ehling, R. A., Wagner, B. & Reddy, S. T. Immune literacy: studying, writing, and modifying adaptive immunity. iScience 23, 101519 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Baker, D. J., Arany, Z., Baur, J. A., Epstein, J. A. & June, C. H. CAR T remedy past most cancers: the evolution of a dwelling drug. Nature 619, 707–715 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Müller, F. et al. CD19 CAR T-cell remedy in autoimmune illness: a case sequence with follow-up. N. Engl. J. Med. 390, 687–700 (2024).

    Article 
    PubMed 

    Google Scholar
     

  • Maldini, C. R., Ellis, G. I. & Riley, J. L. CAR T cells for an infection, autoimmunity and allotransplantation. Nat. Rev. Immunol. 18, 605–616 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hamilton, J. R. et al. In vivo human T cell engineering with enveloped supply automobiles. Nat. Biotechnol. https://doi.org/10.1038/s41587-023-02085-z (2024).

  • Rurik, J. G. et al. CAR T cells produced in vivo to deal with cardiac damage. Science 375, 91–96 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Parker, Ok. R. et al. Single-cell analyses establish mind mural cells expressing CD19 as potential off-tumor targets for CAR-T immunotherapies. Cell 183, 126–142 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Irvine, D. J., Maus, M. V., Mooney, D. J. & Wong, W. W. The way forward for engineered immune cell therapies. Science 378, 853–858 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cetin, M. et al. T-FINDER: a extremely delicate, pan-HLA platform for practical T cell receptor and ligand discovery. Sci. Adv. 10, eadk3060 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zuiani, A. et al. A multivalent mRNA monkeypox virus vaccine (BNT166) protects mice and macaques from orthopoxvirus illness. Cell 187, 1363–1373 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Rojas, L. A. et al. Customized RNA neoantigen vaccines stimulate T cells in pancreatic most cancers. Nature 618, 144–150 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gopfrich, Ok., Platzman, I. & Spatz, J. P. Mastering complexity: in direction of bottom-up building of multifunctional eukaryotic artificial Cells. Traits Biotechnol. 36, 938–951 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Du, Y. et al. Membrane-anchored DNA nanojunctions allow nearer antigen-presenting cell–T-cell contact in elevated T-cell receptor triggering. Nat. Nanotechnol. 18, 818–827 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Staufer, O. et al. Artificial virions reveal fatty acid-coupled adaptive immunogenicity of SARS-CoV-2 spike glycoprotein. Nat. Commun. 13, 868 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sigl, C. et al. Programmable icosahedral shell system for virus trapping. Nat. Mater. 20, 1281–1289 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Staufer, O. et al. Backside-up meeting of biomedical related absolutely artificial extracellular vesicles. Sci. Adv. 7, eabg6666 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fernandez-Yague, M. A. et al. Analyzing immune response to engineered hydrogels by hierarchical clustering of inflammatory cell subsets. Sci. Adv. 8, eabd8056 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Parolini, L. et al. Quantity and porosity thermal regulation in lipid mesophases by coupling cell ligands to tender membranes. Nat. Commun. 6, 5948 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chan, Y. H., van Lengerich, B. & Boxer, S. G. Results of linker sequences on vesicle fusion mediated by lipid-anchored DNA oligonucleotides. Proc. Natl Acad. Sci. USA 106, 979–984 (2009).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Laksono, B. M., de Vries, R. D., Duprex, W. P. & de Swart, R. L. Measles pathogenesis, immune suppression and animal fashions. Curr. Opin. Virol. 41, 31–37 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Abraham, L. & Fackler, O. T. HIV-1 Nef: a multifaceted modulator of T cell receptor signaling. Cell Commun. Sign. 10, 39 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hu, Y., Duan, Y. & Salaita, Ok. DNA nanotechnology for investigating mechanical signaling within the immune system. Angew. Chem. Int Ed. Engl. 62, e202302967 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Schoenit, A. et al. Tuning epithelial cell-cell adhesion and collective dynamics with practical DNA-E-cadherin hybrid linkers. Nano Lett. 22, 302–310 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Imle, A. et al. Experimental and computational analyses reveal that environmental restrictions form HIV-1 unfold in 3D cultures. Nat. Commun. 10, 2144 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gallucci, L. et al. Tissue-like environments form practical interactions of HIV-1 with immature dendritic cells. EMBO Rep. 24, e56818 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rothemund, P. W. Folding DNA to create nanoscale shapes and patterns. Nature 440, 297–302 (2006).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Göpfrich, Ok. et al. Giant-conductance transmembrane porin created from DNA origami. ACS Nano 10, 8207–8214 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhan, P., Jahnke, Ok., Liu, N. & Göpfrich, Ok. Practical DNA-based cytoskeletons for artificial cells. Nat. Chem. 14, 958–963 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Veneziano, R. et al. Position of nanoscale antigen group on B-cell activation probed utilizing DNA origami. Nat. Nanotechnol. 15, 716–723 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Seitz, I. et al. DNA-origami-directed virus capsid polymorphism. Nat. Nanotechnol. 18, 1205–1212 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Geary, C., Grossi, G., McRae, E. Ok. S., Rothemund, P. W. Ok. & Andersen, E. S. RNA origami design instruments allow cotranscriptional folding of kilobase-sized nanoscaffolds. Nat. Chem. 13, 549–558 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Becker, J., Fakhiri, J. & Grimm, D. Unbelievable AAV gene remedy vectors and learn how to discover them—random diversification, rational design and machine studying. Pathogens 11, 756 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Strebinger, D. et al. Cell type-specific supply by modular envelope design. Nat. Commun. 14, 5141 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Oktay, E. et al. DNA origami presenting the receptor binding area of SARS-CoV-2 elicit sturdy protecting immune response. Commun. Biol. 6, 308 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tan, C. L. et al. Prediction of tumor-reactive T cell receptors from scRNA-seq knowledge for personalised T cell remedy. Nat. Biotechnol. https://doi.org/10.1038/s41587-024-02161-y (2024).

  • Dekkers, J. F. et al. Uncovering the mode of motion of engineered T cells in affected person most cancers organoids. Nat. Biotechnol. 41, 60–69 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Verbeke, R., Hogan, M. J., Loré, Ok. & Pardi, N. Innate immune mechanisms of mRNA vaccines. Immunity 55, 1993–2005 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Parhiz, H., Atochina-Vasserman, E. N. & Weissman, D. mRNA-based therapeutics: trying past COVID-19 vaccines. Lancet 403, 1192–1204 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wamhoff, E. C. et al. Enhancing antibody responses by multivalent antigen show on thymus-independent DNA origami scaffolds. Nat. Commun. 15, 795 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Du, R. R. et al. Innate immune stimulation utilizing 3D wireframe DNA origami. ACS Nano 16, 20340–20352 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zeng, Y. C. et al. DNA origami vaccine (DoriVac) nanoparticles enhance each humoral and mobile immune responses to infectious ailments. Preprint at bioRxiv https://doi.org/10.1101/2023.12.29.573647 (2024).

  • Liu, S. et al. A DNA nanodevice-based vaccine for most cancers immunotherapy. Nat. Mater. 20, 421–430 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wagenbauer, Ok. F. et al. Programmable multispecific DNA-origami-based T-cell engagers. Nat. Nanotechnol. 18, 1319–1326 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Arulkumaran, N. et al. DNA nanodevices with selective immune cell interplay and performance. ACS Nano 15, 4394–4404 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kern, N., Dong, R., Douglas, S. M., Vale, R. D. & Morrissey, M. A. Tight nanoscale clustering of Fcγ receptors utilizing DNA origami promotes phagocytosis. eLife 10, e68311 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Solar, Y. et al. DNA origami-based synthetic antigen-presenting cells for adoptive T cell remedy. Sci. Adv. 8, eadd1106 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dong, R. et al. DNA origami patterning of artificial T cell receptors reveals spatial management of the sensitivity and kinetics of sign activation. Proc. Natl Acad. Sci. USA 118, e2109057118 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang, D. et al. Enrichment and sensing tumor cells by embedded immunomodulatory DNA hydrogel to inhibit postoperative tumor recurrence. Nat. Commun. 14, 4511 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Guo, Z. et al. Immunostimulatory DNA hydrogel enhances protecting efficacy of nanotoxoids in opposition to bacterial an infection. Adv. Mater. 35, e2211717 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ijäs, H., Hakaste, I., Shen, B., Kostiainen, M. A. & Linko, V. Reconfigurable DNA origami nanocapsule for pH-controlled encapsulation and show of cargo. ACS Nano 13, 5959–5967 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang, Q. et al. DNA origami as an in vivo drug supply automobile for most cancers remedy. ACS Nano 8, 6633–6643 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ma, V. P. et al. The magnitude of LFA-1/ICAM-1 forces fine-tune TCR-triggered T cell activation. Sci. Adv. 8, eabg4485 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Simoncelli, S. et al. Multi-color molecular visualization of signaling proteins reveals how C-terminal Src kinase nanoclusters regulate T cell receptor activation. Cell Rep. 33, 108523 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Jo, M. H. et al. Willpower of single-molecule loading fee throughout mechanotransduction in cell adhesion. Science 383, 1374–1379 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Brockman, J. M. et al. Stay-cell super-resolved PAINT imaging of piconewton mobile traction forces. Nat. Strategies 17, 1018–1024 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rosenberg, A. M., Ayres, C. M., Medina-Cucurella, A. V., Whitehead, T. A. & Baker, B. M. Enhanced T cell receptor specificity via framework engineering. Entrance. Immunol. 15, 1345368 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Abuwatfa, W. H., Pitt, W. G. & Husseini, G. A. Scaffold-based 3D cell tradition fashions in most cancers analysis. J. Biomed. Sci. 31, 7 (2024).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kumbhojkar, N. et al. Neutrophils bearing adhesive polymer micropatches as a drug-free most cancers immunotherapy. Nat. Biomed. Eng. https://doi.org/10.1038/s41551-024-01180-z (2024).

  • Kritchevsky, D., Davidson, L. M. & Goodman, G. T. Seasonal variation of serum lipids within the Vervet monkey. Atherosclerosis 68, 151–157 (1987).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Vorselen, D. et al. Microparticle traction pressure microscopy reveals subcellular pressure exertion patterns in immune cell-target interactions. Nat. Commun. 11, 20 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang, J. et al. Profiling the origin, dynamics, and performance of traction pressure in B cell activation. Sci. Sign 11, eaai9192 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • Du, F., Liu, Y. G. & Scott, E. A. Immunotheranostic polymersomes modularly assembled from tetrablock and diblock copolymers with oxidation-responsive fluorescence. Cell Mol. Bioeng. 10, 357–370 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hou, X., Zaks, T., Langer, R. & Dong, Y. Lipid nanoparticles for mRNA supply. Nat. Rev. Mater. 6, 1078–1094 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kim, M. et al. Micro-engineering and nano-engineering approaches to research tumour ecosystems. Nat. Rev. Most cancers 23, 581–599 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Straehla, J. P. et al. A predictive microfluidic mannequin of human glioblastoma to evaluate trafficking of blood-brain barrier-penetrant nanoparticles. Proc. Natl Acad. Sci. USA 119, e2118697119 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Migueles, S. A. et al. HIV vaccines induce CD8+ T cells with low antigen receptor sensitivity. Science 382, 1270–1276 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Naulaerts, S. et al. Multiomics and spatial mapping characterizes human CD8+ T cell states in most cancers. Sci. Transl. Med. 15, eadd1016 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chockley, P. J., Ibanez-Vega, J., Krenciute, G., Talbot, L. J. & Gottschalk, S. Synapse-tuned CARs improve immune cell anti-tumor exercise. Nat. Biotechnol. 41, 1434–1445 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yagüe Relimpio, A. et al. Backside-up assembled artificial SARS-CoV-2 miniviruses reveal lipid membrane affinity of omicron variant spike glycoprotein. ACS Nano 17, 23913–23923 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Macher, M., Platzman, I. & Spatz, J. P. Backside-up meeting of bioinspired, absolutely artificial extracellular vesicles. Strategies Mol. Biol. 2654, 263–276 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lipp, C. et al. Microfluidic system combining hydrodynamic and dielectrophoretic trapping for the managed contact between single micro-sized objects and software to adhesion assays. Lab Chip 23, 3593–3602 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hernandez Bücher, J. E. et al. Backside-up meeting of target-specific cytotoxic artificial cells. Biomaterials 285, 121522 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Yang, X. et al. Engineered exosomes as theranostic platforms for most cancers remedy. ACS Biomater. Sci. Eng. 9, 5479–5503 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang, J. et al. Micropatterned tender hydrogels to check the interaction of receptors and forces in T cell activation. Acta Biomater. 119, 234–246 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Deeg, J. et al. T cell activation is decided by the variety of introduced antigens. Nano Lett. 13, 5619–5626 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jin, W. et al. T cell activation and immune synapse group reply to the microscale mechanics of structured surfaces. Proc. Natl Acad. Sci. USA 116, 19835–19840 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tamzalit, F. et al. Interfacial actin protrusions mechanically improve killing by cytotoxic T cells. Sci. Immunol. 4, eaav5445 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Basu, R. et al. Cytotoxic T cells use mechanical pressure to potentiate goal cell killing. Cell 165, 100–110 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Deng, W. et al. A twin amplification technique for ultrasensitive electrochemiluminescence immunoassay based mostly on a Pt nanoparticles dotted graphene-carbon nanotubes composite and carbon dots functionalized mesoporous Pt/Fe. Analyst 139, 1713–1720 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bošković, F. et al. Simultaneous identification of viruses and viral variants with programmable DNA nanobait. Nat. Nanotechnol. 18, 290–298 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • RELATED ARTICLES

    LEAVE A REPLY

    Please enter your comment!
    Please enter your name here

    Most Popular

    Recent Comments