Huang, Y. et al. Lithium manganese spinel cathodes for lithium‐ion batteries. Adv. Power Mater. 11, 2000997 (2021).
Thackeray, M. M., David, W. I. F., Bruce, P. G. & Goodenough, J. B. Lithium insertion into manganese spinels. Mater. Res. Bull. 18, 461–472 (1983).
Zhang, X. et al. Bulk oxygen stabilization through electrode‐electrolyte interphase tailor-made floor actions of Li‐wealthy cathodes. Adv. Power Mater. 13, 2202929 (2023).
Manthiram, A., Knight, J. C., Myung, S. T., Oh, S. M. & Solar, Y. Ok. Nickel‐wealthy and lithium‐wealthy layered oxide cathodes: progress and views. Adv. Power Mater. 6, 1501010 (2016).
Armstrong, A. R. & Bruce, P. G. Synthesis of layered LiMnO2 as an electrode for rechargeable lithium batteries. Nature 381, 499–500 (1996).
Zhang, S. et al. Factor substitution of a spinel LiMn2O4 cathode. J. Mater. Chem. A 9, 21532–21550 (2021).
Hua, W. et al. Structural insights into the formation and voltage degradation of lithium- and manganese-rich layered oxides. Nat. Commun. 10, 5365 (2019).
Manthiram, A., Chemelewski, Ok. & Lee, E.-S. A perspective on the high-voltage LiMn1.5Ni0.5O4 spinel cathode for lithium-ion batteries. Power Environ. Sci. 7, 1339–1350 (2014).
Olivetti, E. A., Ceder, G., Gaustad, G. G. & Fu, X. Lithium-ion battery provide chain concerns: evaluation of potential bottlenecks in important metals. Joule 1, 229–243 (2017).
Banza Lubaba Nkulu, C. et al. Sustainability of artisanal mining of cobalt in DR Congo. Nat. Maintain. 1, 495–504 (2018).
Lee, J. et al. Unlocking the potential of cation-disordered oxides for rechargeable lithium batteries. Science 343, 519–522 (2014).
Lee, J. et al. Reversible Mn2+/Mn4+ double redox in lithium-excess cathode supplies. Nature 556, 185–190 (2018).
Lun, Z. Y. et al. Design rules for high-capacity Mn-based cation-disordered rocksalt cathodes. Chem 6, 153–168 (2020).
Huang, J. et al. Non-topotactic reactions allow excessive price functionality in Li-rich cathode supplies. Nat. Power 6, 706–714 (2021).
Clément, R. J., Lun, Z. & Ceder, G. Cation-disordered rocksalt transition steel oxides and oxyfluorides for top power lithium-ion cathodes. Power Environ. Sci. 13, 345–373 (2020).
Li, H. et al. Towards high-energy Mn-based disordered-rocksalt Li-ion cathodes. Joule 6, 53–91 (2022).
Home, R. A. et al. Lithium manganese oxyfluoride as a brand new cathode materials exhibiting oxygen redox. Power Environ. Sci. 11, 926–932 (2018).
Yabuuchi, N. et al. Excessive-capacity electrode supplies for rechargeable lithium batteries: Li3NbO4-based system with cation-disordered rocksalt construction. Proc. Natl Acad. Sci. USA 112, 7650–7655 (2015).
Freire, M. et al. A brand new energetic Li–Mn–O compound for top power density Li-ion batteries. Nat. Mater. 15, 173–177 (2016).
Sato, T., Sato, Ok., Zhao, W., Kajiya, Y. & Yabuuchi, N. Metastable and nanosize cation-disordered rocksalt-type oxides: revisit of stoichiometric LiMnO2 and NaMnO2. J. Mater. Chem. A 6, 13943–13951 (2018).
Cai, Z. et al. Thermodynamically pushed artificial optimization for cation‐disordered rock salt cathodes. Adv. Power Mater. 12, 2103923 (2022).
Küzma, M. et al. Electrochemical exercise of Li2FeTiO4 and Li2MnTiO4 as potential energetic supplies for Li ion batteries: a comparability with Li2NiTiO4. J. Energy Sources 189, 81–88 (2009).
Prabaharan, S., Michael, M., Ikuta, H., Uchimoto, Y. & Wakihara, M. Li2NiTiO4—a brand new optimistic electrode for lithium batteries: soft-chemistry synthesis and electrochemical characterization. Strong State Ion. 172, 39–45 (2004).
Ophus, C. Quantitative scanning transmission electron microscopy for supplies science: imaging, diffraction, spectroscopy, and tomography. Annu. Rev. Mater. Res. 53, 105–141 (2023).
Ophus, C. 4-dimensional scanning transmission electron microscopy (4D-STEM): from scanning nanodiffraction to ptychography and past. Microsc. Microanal. 25, 563–582 (2019).
Cai, Z. et al. In situ fashioned partially disordered phases as earth-abundant Mn-rich cathode supplies. Nat. Power 9, 27–36 (2023).
Li, L. et al. Fluorination‐enhanced floor stability of cation‐disordered rocksalt cathodes for Li‐ion batteries. Adv. Funct. Mater. 31, 2101888 (2021).
Ahn, J. et al. Ultrahigh‐capability rocksalt cathodes enabled by biking‐activated structural modifications. Adv. Power Mater. 13, 2300221 (2023).
Ahn, J. et al. Distinctive biking efficiency enabled by native structural rearrangements in disordered rocksalt cathodes. Adv. Power Mater. 12, 2200426 (2022).
City, A., Lee, J. & Ceder, G. The configurational house of rocksalt-type oxides for high-capacity lithium battery electrodes. Adv. Power Mat. https://doi.org/10.1002/aenm.201400478 (2014).
Jones, M. A. et al. Brief-range ordering in a battery electrode, the ‘cation-disordered’ rocksalt Li1.25Nb0.25Mn0.5O2. Chem. Commun. 55, 9027–9030 (2019).
Zeltmann, S. E. et al. Uncovering polar vortex constructions by inversion of a number of scattering with a stacked Bloch wave mannequin. Ultramicroscopy 250, 113732 (2023).
Holzwarth, U. & Gibson, N. The Scherrer equation versus the ‘Debye–Scherrer equation’. Nat. Nanotechnol. 6, 534–534 (2011).
Lee, E. et al. Nanocomposite engineering of a high-capacity partially ordered cathode for Li-ion batteries. Adv. Mater. 35, e2208423 (2023).
Chen, T., Yang, J., Barroso-Luque, L. & Ceder, G. Eradicating the two-phase transition in spinel LiMn2O4 by way of cation dysfunction. ACS Power Lett. 8, 314–319 (2022).
Cai, Z. et al. Realizing steady cation order-to-disorder tuning in a category of high-energy spinel-type Li-ion cathodes. Matter 4, 3897–3916 (2021).
Okubo, M. et al. Quick Li-ion insertion into nanosized LiMn2O4 with out area boundaries. ACS Nano 4, 741–752 (2010).
Fisher, M. E. & Berker, A. N. Scaling for first-order part transitions in thermodynamic and finite techniques. Phys. Rev. B 26, 2507–25143 (1982).
Nienhuis, B., Berker, A., Riedel, E. Ok. & Schick, M. First-and second-order part transitions in Potts fashions: renormalization-group answer. Phys. Rev. Lett. 43, 737–740 (1979).
Ji, H. et al. Ultrahigh energy and power density in partially ordered lithium-ion cathode supplies. Nat. Power 5, 213–221 (2020).
Abdellahi, A., City, A., Dacek, S. & Ceder, G. The impact of cation dysfunction on the typical Li intercalation voltage of transition-metal oxides. Chem. Mater. 28, 3659–3665 (2016).
Abdellahi, A., City, A., Dacek, S. & Ceder, G. Understanding the impact of cation dysfunction on the voltage profile of lithium transition-metal oxides. Chem. Mater. 28, 5373–5383 (2016).
Zhang, Y. et al. Investigating particle dimension‐dependent redox kinetics and cost distribution in disordered rocksalt cathodes. Adv. Funct. Mater. 32, 2110502 (2022).
Noh, H.-J., Youn, S., Yoon, C. S. & Solar, Y.-Ok. Comparability of the structural and electrochemical properties of layered Li[NixCoyMnz]O2 (x = 1/3, 0.5, 0.6, 0.7, 0.8 and 0.85) cathode materials for lithium-ion batteries. J. Energy Sources 233, 121–130 (2013).
He, P., Wang, H., Qi, L. & Osaka, T. Electrochemical traits of layered LiNi1/3Co1/3Mn1/3O2 and with completely different synthesis situations. J. Energy Sources 160, 627–632 (2006).
Yamada, A., Chung, S.-C. & Hinokuma, Ok. Optimized LiFePO4 for lithium battery cathodes. J. Electrochem. Soc. 148, A224 (2001).
Padhi, A. Ok., Nanjundaswamy, Ok. S. & Goodenough, J. B. Phospho‐olivines as optimistic‐electrode supplies for rechargeable lithium batteries. J. Electrochem. Soc. 144, 1188 (1997).
Thackeray, M. M., Lee, E., Shi, B. Y. & Croy, J. R. From LiMn2O4 to partially-disordered Li2MnNiO4: the evolution of lithiated-spinel cathodes for Li-ion batteries. J. Electrochem. Soc. https://doi.org/10.1149/1945-7111/ac50dd (2022).
Huang, T.-Y., Crafton, M. J., Yue, Y., Tong, W. & McCloskey, B. D. Deconvolution of intermixed redox processes in Ni-based cation-disordered Li-excess cathodes. Power Environ. Sci. 14, 1553–1562 (2021).
Savitzky, B. H. et al. py4DSTEM: a software program package deal for four-dimensional scanning transmission electron microscopy information evaluation. Microsc. Microanal. 27, 712–743 (2021).
McGibney, G., Smith, M., Nichols, S. & Crawley, A. Quantitative analysis of a number of partial Fourier reconstruction algorithms utilized in MRI. Magn. Reson. Med. 30, 51–59 (1993).
Ravel, B. & Newville, M. ATHENA, ARTEMIS, HEPHAESTUS: information evaluation for X-ray absorption spectroscopy utilizing IFEFFIT. J. Synchrotron Radiat. 12, 537–541 (2005).
Qiao, R. et al. Excessive-efficiency in situ resonant inelastic X-ray scattering (iRIXS) endstation on the Superior Mild Supply. Rev. Sci. Instrum. 88, 033106 (2017).
Chuang, Y.-D. et al. Modular smooth X-ray spectrometer for purposes in power sciences and quantum supplies. Rev. Sci. Instrum. 88, 013110 (2017).