Thursday, September 11, 2025
HomeNanotechnologyEven-integer quantum Corridor impact in an oxide attributable to a hidden Rashba...

Even-integer quantum Corridor impact in an oxide attributable to a hidden Rashba impact


  • Klitzing, Okay. V., Dorda, G. & Pepper, M. New technique for high-accuracy willpower of the fine-structure fixed primarily based on quantized Corridor resistance. Phys. Rev. Lett. 45, 494–497 (1980).

    Article 

    Google Scholar
     

  • Tsui, D. C., Stormer, H. L. & Gossard, A. C. Two-dimensional magnetotransport within the excessive quantum restrict. Phys. Rev. Lett. 48, 1559–1562 (1982).

    Article 
    CAS 

    Google Scholar
     

  • Novoselov, Okay. S. et al. Two-dimensional gasoline of massless Dirac fermions in graphene. Nature 438, 197–200 (2005).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang, Y., Tan, Y.-W., Stormer, H. L. & Kim, P. Experimental remark of the quantum Corridor impact and Berry’s part in graphene. Nature 438, 201–204 (2005).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tsukazaki, A. et al. Quantum Corridor impact in polar oxide heterostructures. Science 315, 1388–1391 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chang, C.-Z. et al. Experimental remark of the quantum anomalous Corridor impact in a magnetic topological insulator. Science 340, 167–170 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li, L. et al. Quantum Corridor impact in black phosphorus two-dimensional electron system. Nat. Nanotechnol. 11, 593–597 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Matsubara, Y. et al. Remark of the quantum Corridor impact in δ-doped SrTiO3. Nat. Commun. 7, 11631 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bandurin, D. A. et al. Excessive electron mobility, quantum Corridor impact and anomalous optical response in atomically skinny InSe. Nat. Nanotechnol. 12, 223–227 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Movva, H. C. P. et al. Density-dependent quantum Corridor states and Zeeman splitting in monolayer and bilayer WSe2. Phys. Rev. Lett. 118, 247701 (2017).

    Article 
    PubMed 

    Google Scholar
     

  • Xu, S. et al. Odd-integer quantum Corridor states and large spin susceptibility in p-type few-layer WSe2. Phys. Rev. Lett. 118, 067702 (2017).

    Article 
    PubMed 

    Google Scholar
     

  • Yang, J. et al. Integer and fractional quantum Corridor impact in ultrahigh high quality few-layer black phosphorus transistors. Nano Lett. 18, 229–234 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Qiu, G. et al. Quantum Corridor impact of Weyl fermions in n-type semiconducting tellurene. Nat. Nanotechnol. 15, 585–591 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sheng, F. et al. Rashba valleys and quantum Corridor states in few-layer black arsenic. Nature 593, 56–60 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bolotin, Okay. I., Ghahari, F., Shulman, M. D., Stormer, H. L. & Kim, P. Remark of the fractional quantum Corridor impact in graphene. Nature 462, 196–199 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Du, X., Skachko, I., Duerr, F., Luican, A. & Andrei, E. Y. Fractional quantum Corridor impact and insulating part of Dirac electrons in graphene. Nature 462, 192–195 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li, L. et al. Quantum oscillations in a two-dimensional electron gasoline in black phosphorus skinny movies. Nat. Nanotechnol. 10, 608–613 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Fallahazad, B. et al. Shubnikov–de Haas oscillations of high-mobility holes in monolayer and bilayer WSe2: Landau degree degeneracy, efficient mass, and destructive compressibility. Phys. Rev. Lett. 116, 086601 (2016).

    Article 
    PubMed 

    Google Scholar
     

  • Pisoni, R. et al. Interactions and magnetotransport by spin-valley coupled Landau ranges in monolayer MoS2. Phys. Rev. Lett. 121, 247701 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Suzuki, R. et al. Valley-dependent spin polarization in bulk MoS2 with damaged inversion symmetry. Nat. Nanotechnol. 9, 611–617 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Du, L. et al. Engineering symmetry breaking in 2D layered supplies. Nat. Rev. Phys. 3, 193–206 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Zhang, X., Liu, Q., Luo, J.-W., Freeman, A. J. & Zunger, A. Hidden spin polarization in inversion-symmetric bulk crystals. Nat. Phys. 10, 387–393 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Wu, J. et al. Excessive electron mobility and quantum oscillations in non-encapsulated ultrathin semiconducting Bi2O2Se. Nat. Nanotechnol. 12, 530–534 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang, F. et al. Phonon signatures for polaron formation in an anharmonic semiconductor. Proc. Natl Acad. Sci. USA 119, e2122436119 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tan, C. et al. 2D fin field-effect transistors built-in with epitaxial high-ok gate oxide. Nature 616, 66–72 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yu, A. B. & Rashba, E. I. Oscillatory results and the magnetic susceptibility of carriers in inversion layers. J. Phys. C: Stable State Phys. 17, 6039 (1984).

    Article 

    Google Scholar
     

  • Luo, J., Munekata, H., Fang, F. F. & Stiles, P. J. Remark of the zero-field spin splitting of the bottom electron subband in GaSb-InAs-GaSb quantum wells. Phys. Rev. B 38, 10142–10145 (1988).

    Article 
    CAS 

    Google Scholar
     

  • Nitta, J., Akazaki, T., Takayanagi, H. & Enoki, T. Gate management of spin-orbit interplay in an inverted In0.53Ga0.47As/In0.52Al0.48As heterostructure. Phys. Rev. Lett. 78, 1335–1338 (1997).

    Article 
    CAS 

    Google Scholar
     

  • Murakawa, H. et al. Detection of Berry’s part in a bulk Rashba semiconductor. Science 342, 1490–1493 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Shcherbakov, D. et al. Layer- and gate-tunable spin-orbit coupling in a high-mobility few-layer semiconductor. Sci. Adv. 7, eabe2892 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bihlmayer, G., Noël, P., Vyalikh, D. V., Chulkov, E. V. & Manchon, A. Rashba-like physics in condensed matter. Nat. Rev. Phys. 4, 642–659 (2022).

    Article 

    Google Scholar
     

  • Liang, Y. et al. Molecular beam epitaxy and digital construction of atomically skinny oxyselenide movies. Adv. Mater. 31, 1901964 (2019).

    Article 

    Google Scholar
     

  • Zhou, X. et al. Step-climbing epitaxy of layered supplies with large out-of-plane lattice mismatch. Adv. Mater. 34, 2202754 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Baugher, B. W. H., Churchill, H. O. H., Yang, Y. & Jarillo-Herrero, P. Intrinsic digital transport properties of high-quality monolayer and bilayer MoS2. Nano Lett. 13, 4212–4216 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Neal, A. T., Liu, H., Gu, J. & Ye, P. D. Magneto-transport in MoS2: part coherence, spin–orbit scattering, and the Corridor issue. ACS Nano 7, 7077–7082 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Radisavljevic, B. & Kis, A. Mobility engineering and a metallic–insulator transition in monolayer MoS2. Nat. Mater. 12, 815–820 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li, L. et al. Quick and lengthy pulse excessive magnetic subject facility on the Wuhan Nationwide Excessive Magnetic Subject Heart. IEEE Trans. Appl. Supercond. 24, 9500404 (2014).

    Article 

    Google Scholar
     

  • Xie, J. et al. Realisation of the reconfigurable pulsed excessive magnetic subject facility and its scientific utility at Wuhan Nationwide Pulsed Excessive Magnetic Subject Centre. Excessive Voltage 8, 898–906 (2023).

  • Tan, C. et al. Pressure-free layered semiconductors for 2D transistors with on-state present density exceeding 1.3 mA μm–1. Nano Lett. 22, 3770–3776 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang, C. et al. Single-crystalline van der Waals layered dielectric with excessive dielectric fixed. Nat. Mater. 22, 832–837 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Luo, J., Munekata, H., Fang, F. F. & Stiles, P. J. Results of inversion asymmetry on electron vitality band buildings in GaSb/InAs/GaSb quantum wells. Phys. Rev. B 41, 7685–7693 (1990).

    Article 
    CAS 

    Google Scholar
     

  • Schäpers, T. et al. Impact of the heterointerface on the spin splitting in modulation doped InxGa1−xAs/InP quantum wells for B→0. J. Appl. Phys. 83, 4324–4333 (1998).

    Article 

    Google Scholar
     

  • Schmult, S. et al. Giant Bychkov-Rashba spin-orbit coupling in high-mobility GaN/AlxGa1–xN heterostructures. Phys. Rev. B 74, 033302 (2006).

    Article 

    Google Scholar
     

  • Caviglia, A. D. et al. Tunable Rashba spin-orbit interplay at oxide interfaces. Phys. Rev. Lett. 104, 126803 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Fête, A. et al. Giant modulation of the Shubnikov–de Haas oscillations by the Rashba interplay on the LaAlO3/SrTiO3 interface. New J. Phys. 16, 112002 (2014).

    Article 

    Google Scholar
     

  • Veit, M. J., Arras, R., Ramshaw, B. J., Pentcheva, R. & Suzuki, Y. Nonzero Berry part in quantum oscillations from large Rashba-type spin splitting in LaTiO3/SrTiO3 heterostructures. Nat. Commun. 9, 1458 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Murakami, S., Nagaosa, N. & Zhang, S.-C. Dissipationless quantum spin present at room temperature. Science 301, 1348–1351 (2003).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sinova, J. et al. Common intrinsic spin Corridor impact. Phys. Rev. Lett. 92, 126603 (2004).

    Article 
    PubMed 

    Google Scholar
     

  • Xiao, D., Chang, M.-C. & Niu, Q. Berry part results on digital properties. Rev. Mod. Phys. 82, 1959–2007 (2010).

    Article 
    CAS 

    Google Scholar
     

  • Ganichev, S. D. et al. Spin-galvanic impact. Nature 417, 153–156 (2002).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chappert, C., Fert, A. & Van Dau, F. N. The emergence of spin electronics in information storage. Nat. Mater. 6, 813–823 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mihai Miron, I. et al. Present-driven spin torque induced by the Rashba impact in a ferromagnetic metallic layer. Nat. Mater. 9, 230–234 (2010).

    Article 
    CAS 

    Google Scholar
     

  • Kaplan, D., Stern, A. & Yan, B. Even integer quantum Corridor impact in supplies with hidden spin texture. Preprint at https://arxiv.org/abs/2406.03448 (2024).

  • Su, W. P., Schrieffer, J. R. & Heeger, A. J. Solitons in polyacetylene. Phys. Rev. Lett. 42, 1698–1701 (1979).

    Article 
    CAS 

    Google Scholar
     

  • Wu, J. et al. Chemical patterning of high-mobility semiconducting 2D Bi2O2Se crystals for built-in optoelectronic gadgets. Adv. Mater. 29, 1704060 (2017).

    Article 

    Google Scholar
     

  • RELATED ARTICLES

    LEAVE A REPLY

    Please enter your comment!
    Please enter your name here

    Most Popular

    Recent Comments