Zwaag, Dvan & Meijer, E. W. Fueling connections between chemistry and biology. Science 349, 1056–1057 (2015).
Howard, J. & Hyman, A. A. Dynamics and mechanics of the microtubule plus finish. Nature 422, 753–758 (2003).
Hürtgen, D., Vogel, S. Okay. & Schwille, P. Cytoskeletal and actin‐based mostly polymerization motors and their position in minimal cell design. Adv. Biosyst. 3, e1800311 (2019).
Lubbe, A. S., Wezenberg, S. J. & Feringa, B. L. Synthetic microtubules burst with power. Proc. Natl Acad. Sci. USA 114, 11804–11805 (2017).
Fredy, J. W. et al. Molecular photoswitches mediating the strain-driven disassembly of supramolecular tubules. Proc. Natl Acad. Sci. USA 114, 11850–11855 (2017).
Krieg, E., Bastings, M. M., Besenius, P. & Rybtchinski, B. Supramolecular polymers in aqueous media. Chem. Rev. 116, 2414–2477 (2016).
Cleary, J. M. & Hancock, W. O. Molecular mechanisms underlying microtubule development dynamics. Curr. Biol. 31, R560–R573 (2021).
Akhmanova, A., Stehbens, S. J. & Yap, A. S. Contact, grasp, ship and management: useful cross‐speak between microtubules and cell adhesions. Site visitors 10, 268–274 (2009).
van der Zwaag, D., de Greef, T. F. & Meijer, E. W. Programmable supramolecular polymerizations. Angew. Chem. Int. Ed. 54, 8334–8336 (2015).
Levin, A. et al. Elastic instability-mediated actuation by a supra-molecular polymer. Nat. Phys. 12, 926–930 (2016).
Fu, M. et al. Disassembly of dipeptide single crystals can rework the lipid membrane right into a community. ACS Nano 11, 7349–7354 (2017).
Cera, L. et al. PolyWhips: directional particle transport by gradient‐directed development and stiffening of supramolecular assemblies. Adv. Mater. 29, 1604430 (2016).
Theriot, J. A. The polymerization motor. Site visitors 1, 19–28 (2000).
Asbury, C. L., Gestaut, D. R., Powers, A. F., Franck, A. D. & Davis, T. N. The DAM1 kinetochore advanced harnesses microtubule dynamics to supply power and motion. Proc. Natl Acad. Sci. USA 103, 9873–9878 (2006).
Powers, A. et al. The Ndc80 kinetochore advanced varieties load-bearing attachments to dynamic microtubule ideas through biased diffusion. Cell 136, 865–875 (2009).
Footer, M. J., Kerssemakers, J. W., Theriot, J. A. & Dogterom, M. Direct measurement of power technology by actin filament polymerization utilizing an optical entice. Proc. Natl Acad. Sci. USA 104, 2181–2186 (2007).
Hill, T. L. Theoretical issues associated to the attachment of microtubules to kinetochores. Proc. Natl Acad. Sci. USA 82, 4404–4408 (1985).
Asbury, C. L., Tien, J. F. & Davis, T. N. Kinetochores’ gripping feat: conformational wave or biased diffusion? Developments Cell Biol. 21, 38–46 (2011).
Huang, Z. et al. Pulsating tubules from noncovalent macrocycles. Science 337, 1521–1526 (2012).
Ryu, J.-H., Oh, N.-Okay. & Lee, M. Tubular meeting of amphiphilic inflexible macrocycle with versatile dendrons. Chem. Commun. 1770–1772 (2005).
Kim, H. et al. Self‐dissociating tubules from helical stacking of noncovalent macrocycles. Angew. Chem. Int. Ed. 49, 8471–8475 (2010).
Frisch, H. & Besenius, P. pH‐switchable self‐assembled supplies. Macromol. Fast Commun. 36, 346–363 (2014).
Wang, G. & Liu, S. Methods to assemble a chemical‐gasoline‐pushed self‐meeting. ChemSystemsChem 2, e1900046 (2020).
Boekhoven, J., Hendriksen, W. E., Koper, G. J., Eelkema, R. & van Esch, J. H. Transient meeting of energetic supplies fueled by a chemical response. Science 349, 1075–1079 (2015).
van Ravensteijn, B. G., Hendriksen, W. E., Eelkema, R., van Esch, J. H. & Kegel, W. Okay. Gas-mediated transient clustering of colloidal constructing blocks. J. Am. Chem. Soc. 139, 9763–9766 (2017).
Tena-Solsona, M. et al. Non-equilibrium dissipative supramolecular supplies with a tunable lifetime. Nat. Commun. 8, 15895 (2017).
Grötsch, R. Okay. et al. Pathway dependence within the fuel-driven dissipative self-assembly of nanoparticles. J. Am. Chem. Soc. 141, 9872–9878 (2019).
Grötsch, R. Okay. et al. Dissipative self‐meeting of photoluminescent silicon nanocrystals. Angew. Chem. Int. Ed. 57, 14608–14612 (2018).
Heuser, T., Steppert, A.-Okay., Molano Lopez, C., Zhu, B. & Walther, A. Generic idea to program the time area of self-assemblies with a self-regulation mechanism. Nano Lett. 15, 2213–2219 (2014).
Carlson, E. J., Riel, A. M. & Dahl, B. J. Donor–acceptor biaryl lactones: pH induced molecular switches with intramolecular cost switch modulation. Tetrahedron Lett. 53, 6245–6249 (2012).
Sorrenti, A., Leira-Iglesias, J., Markvoort, A. J., de Greef, T. F. & Hermans, T. M. Non-equilibrium supramolecular polymerization. Chem. Soc. Rev. 46, 5476–5490 (2017).
Wang, Y., Huang, Z., Kim, Y., He, Y. & Lee, M. Visitor-driven inflation of self-assembled nanofibers via hole channel formation. J. Am. Chem. Soc. 136, 16152–16155 (2014).
Vogel, E. & Kiefer, W. Investigation of the steel adsorbate interface of the system silver coumarin and silver hydrocoumarin by way of floor enhanced Raman spectroscopy. Fresenius J. Anal. Chem. 361, 628–630 (1998).
Moriyama, T. et al. Polarization Raman imaging of natural monolayer islands for crystal orientation evaluation. ACS Omega 6, 9520–9527 (2021).
Ji, X. et al. Reactivity triggered by an natural microcrystal interface: a case examine involving an environmentally benign, fragrant boric acid response. Chem. Commun. 56, 11114–11117 (2020).
Kumar, D., Thipparaboina, R., Sreedhar, B. & Shastri, N. R. The position of floor chemistry in crystal morphology and its related properties. CrystEngComm 17, 6646–6650 (2015).
Miller, D. D. & Chuang, S. S. C. Management of CO2 adsorption and desorption utilizing polyethylene glycol in a tetraethylenepentamine skinny movie: an in situ ATR and theoretical examine. J. Phys. Chem. C 120, 25489–25504 (2016).
Perl, A. et al. Gradient-driven movement of multivalent ligand molecules alongside a floor functionalized with a number of receptors. Nat. Chem. 3, 317–322 (2011).
Vanossi, A., Manini, N., Urbakh, M., Zapperi, S. & Tosatti, E. Modeling friction: from nanoscale to mesoscale. Rev. Mod. Phys. 85, 529–552 (2013).
Bormuth, V., Varga, V., Howard, J. & Schäffer, E. Protein friction limits diffusive and directed actions of kinesin motors on microtubules. Science 325, 870–873 (2009).
Wen, H., Morris, Okay. R. & Park, Okay. Hydrogen bonding interactions between adsorbed polymer molecules and crystal floor of acetaminophen. J. Colloid Interface Sci. 290, 325–335 (2005).
Poornachary, S. Okay. et al. Anisotropic crystal development inhibition by polymeric components: affect on modulation of naproxen crystal form and dimension. Cryst. Progress Des. 17, 4844–4854 (2017).
Li, Z., Fan, Q. & Yin, Y. Colloidal self-assembly approaches to sensible nanostructured supplies. Chem. Rev. 122, 4976–5067 (2021).
Sather, N. A. et al. 3D printing of supramolecular polymer hydrogels with hierarchical construction. Small 17, e2005743 (2021).
Xi, Y. & Pozzo, L. D. Electrical discipline directed formation of aligned conjugated polymer fibers. Mushy Matter 13, 3894–3908 (2017).
Altomare, A. et al. EXPO2013: a equipment of instruments for phasing crystal constructions from powder knowledge. J. Appl. Crystallogr. 46, 1231–1235 (2013).
Vanlier, J. et al. lumicks/pylake: v1.4.0. Zenodo https://doi.org/10.5281/zenodo.10723300 (2024).
Florin, E.-L., Pralle, A., Stelzer, E. H. Okay. & Hörber, J. Okay. H. Photonic power microscope calibration by thermal noise evaluation. Appl. Phys. A 66, S75–S78 (1998).
Neese, F. The ORCA program system. WIREs Comput. Mol. Sci. 2, 73–78 (2011).
Becke, A. D. Density-functional thermochemistry. III. The position of actual change. J. Chem. Phys. 98, 5648–5652 (1993).
Lee, C., Yang, W. & Parr, R. G. Growth of the Colle-Salvetti correlation-energy method right into a useful of the electron density. Phys. Rev. B 37, 785–789 (1988).
Vosko, S. H., Wilk, L. & Nusair, M. Correct spin-dependent electron liquid correlation energies for native spin density calculations: a essential evaluation. Can. J. Phys. 58, 1200–1211 (1980).
Stephens, P. J., Devlin, F. J., Chabalowski, C. F. & Frisch, M. J. Ab initio calculation of vibrational absorption and round dichroism spectra utilizing density useful power fields. J. Phys. Chem. 98, 11623–11627 (1994).
Weigend, F. & Ahlrichs, R. Balanced foundation units of break up valence, triple zeta valence and quadruple zeta valence high quality for H to Rn: design and evaluation of accuracy. Phys. Chem. Chem. Phys. 7, 3297 (2005).
Grimme, S., Ehrlich, S. & Goerigk, L. Impact of the damping operate in dispersion corrected density useful concept. J. Comput. Chem. 32, 1456–1465 (2011).
Grimme, S., Antony, J., Ehrlich, S. & Krieg, H. A constant and correct ab initio parametrization of density useful dispersion correction (DFT-D) for the 94 components H-Pu. J. Chem. Phys. 132, 154104 (2010).
Neese, F., Wennmohs, F., Hansen, A. & Becker, U. Environment friendly, approximate and parallel Hartree–Fock and hybrid DFT calculations. A ‘chain-of-spheres’ algorithm for the Hartree–Fock change. Chem. Phys. 356, 98–109 (2009).
Weigend, F. Correct Coulomb-fitting foundation units for H to Rn. Phys. Chem. Chem. Phys. 8, 1057 (2006).