Schnitzer, J. E. Vascular focusing on as a technique for most cancers remedy. N. Engl. J. Med. 339, 472–474 (1998).
Shuvaev, V. V., Brenner, J. S. & Muzykantov, V. R. Focused endothelial nanomedicine for widespread acute pathological situations. J. Management. Launch 219, 576–595 (2015).
Mitchell, M. J. et al. Engineering precision nanoparticles for drug supply. Nat. Rev. Drug Discov. 20, 101–124 (2021).
Poon, W., Kingston, B. R., Ouyang, B., Ngo, W. & Chan, W. C. W. A framework for designing supply techniques. Nat. Nanotechnol. 15, 819–829 (2020).
Li, J. & Kataoka, Okay. Chemo-physical methods to advance the in vivo performance of focused nanomedicine: the subsequent technology. J. Am. Chem. Soc. 143, 538–559 (2021).
Blanco, E., Shen, H. & Ferrari, M. Ideas of nanoparticle design for overcoming organic obstacles to drug supply. Nat. Biotechnol. 33, 941–951 (2015).
Thomas, O. S. & Weber, W. Overcoming physiological obstacles to nanoparticle supply—are we there but? Entrance. Bioeng. Biotechnol. 7, 415 (2019).
Xu, S., Olenyuk, B. Z., Okamoto, C. T. & Hamm-Alvarez, S. F. Concentrating on receptor-mediated endocytotic pathways with nanoparticles: rationale and advances. Adv. Drug Deliv. Rev. 65, 121–138 (2013).
Steichen, S. D., Caldorera-Moore, M. & Peppas, N. A. A evaluation of present nanoparticle and focusing on moieties for the supply of most cancers therapeutics. Eur. J. Pharm. Sci. 48, 416–427 (2013).
Park, Okay. Transcending nanomedicine to the subsequent degree: are we there but? J. Management. Launch 298, 213 (2019).
Solar, D., Zhou, S. & Gao, W. What went fallacious with anticancer nanomedicine design and the right way to make it proper. ACS Nano 14, 12281–12290 (2020).
van der Meel, R., Lammers, T. & Hennink, W. E. Most cancers nanomedicines: oversold or underappreciated? Skilled Opin. Drug Deliv. 14, 1–5 (2017).
Kim, S. M., Faix, P. H. & Schnitzer, J. E. Overcoming key organic obstacles to most cancers drug supply and efficacy. J. Management. Launch 267, 15–30 (2017).
Wilhelm, S. et al. Evaluation of nanoparticle supply to tumours. Nat. Rev. Mater. 1, 16014 (2016).
Schnitzer, J. E. Replace on the mobile and molecular foundation of capillary permeability. Developments Cardiovasc. Med. 3, 124–130 (1993).
Park, Okay. The start of the top of the nanomedicine hype. J. Management. Launch 305, 221–222 (2019).
Dai, Q. et al. Quantifying the ligand-coated nanoparticle supply to most cancers cells in stable tumors. ACS Nano 12, 8423–8435 (2018).
Cheng, Y. H., He, C., Riviere, J. E., Monteiro-Riviere, N. A. & Lin, Z. Meta-analysis of nanoparticle supply to tumors utilizing a physiologically based mostly pharmacokinetic modeling and simulation strategy. ACS Nano 14, 3075–3095 (2020).
Sheth, V., Wang, L., Bhattacharya, R., Mukherjee, P. & Wilhelm, S. Methods for delivering nanoparticles throughout tumor blood vessels. Adv. Funct. Mater. 31, 2007363 (2021).
Gu, L., Zhang, F., Wu, J. & Zhuge, Y. Nanotechnology in drug supply for liver fibrosis. Entrance. Mol. Biosci. 8, 804396 (2021).
Athanasopoulou, F., Manolakakis, M., Vernia, S. & Kamaly, N. Nanodrug supply techniques for metabolic continual liver illnesses: advances and views. Nanomedicine 18, 67–84 (2023).
Ghitescu, L., Fixman, A., Simionescu, M. & Simionescu, N. Particular binding websites for albumin restricted to plasmalemmal vesicles of steady capillary endothelium: receptor-mediated transcytosis. J. Cell Biol. 102, 1304–1311 (1986).
Schnitzer, J. E., Oh, P., Pinney, E. & Allard, J. Filipin-sensitive caveolae-mediated transport in endothelium: decreased transcytosis, scavenger endocytosis, and capillary permeability of choose macromolecules. J. Cell Biol. 127, 1217–1232 (1994).
Griffin, N. M. et al. Label-free, normalized quantification of complicated mass spectrometry information for proteomic evaluation. Nat. Biotechnol. 28, 83–89 (2010).
Durr, E. et al. Direct proteomic mapping of the lung microvascular endothelial cell floor in vivo and in cell tradition. Nat. Biotechnol. 22, 985–992 (2004).
Massey, Okay. A. & Schnitzer, J. E. Concentrating on and imaging signature caveolar molecules in lungs. Proc. Am. Thorac. Soc. 6, 419–430 (2009).
Oh, P. et al. Subtractive proteomic mapping of the endothelial floor in lung and stable tumours for tissue-specific remedy. Nature 429, 629–635 (2004).
Oh, P. et al. In vivo proteomic imaging evaluation of caveolae reveals pumping system to penetrate stable tumors. Nat. Med. 20, 1062–1068 (2014).
Schnitzer, J. E., McIntosh, D. P., Dvorak, A. M., Liu, J. & Oh, P. Separation of caveolae from related microdomains of GPI-anchored proteins. Science 269, 1435–1439 (1995).
Carver, L. A. & Schnitzer, J. E. Caveolae: mining little caves for brand new most cancers targets. Nat. Rev. Most cancers 3, 571–581 (2003).
Schnitzer, J. E., Oh, P., Jacobson, B. S. & Dvorak, A. M. Caveolae from luminal plasmalemma of rat lung endothelium: microdomains enriched in caveolin, Ca(2+)-ATPase, and inositol trisphosphate receptor. Proc. Natl Acad. Sci. USA 92, 1759–1763 (1995).
Schnitzer, J. E., Oh, P. & McIntosh, D. P. Function of GTP hydrolysis in fission of caveolae immediately from plasma membranes. Science 274, 239–242 (1996).
Oh, P., McIntosh, D. P. & Schnitzer, J. E. Dynamin on the neck of caveolae mediates their budding to kind transport vesicles by GTP-driven fission from the plasma membrane of endothelium. J. Cell Biol. 141, 101–114 (1998).
Schnitzer, J. E. Caveolae: from fundamental trafficking mechanisms to focusing on transcytosis for tissue-specific drug and gene supply in vivo. Adv. Drug Deliv. Rev. 49, 265–280 (2001).
Oh, P. et al. Dwell dynamic imaging of caveolae pumping focused antibody quickly and particularly throughout endothelium within the lung. Nat. Biotechnol. 25, 327–337 (2007).
Chrastina, A., Valadon, P., Massey, Okay. A. & Schnitzer, J. E. Lung vascular focusing on utilizing antibody to aminopeptidase P: CT-SPECT imaging, biodistribution and pharmacokinetic evaluation. J. Vasc. Res. 47, 531–543 (2010).
McIntosh, D. P., Tan, X. Y., Oh, P. & Schnitzer, J. E. Concentrating on endothelium and its dynamic caveolae for tissue-specific transcytosis in vivo: a pathway to beat cell obstacles to drug and gene supply. Proc. Natl Acad. Sci. USA 99, 1996–2001 (2002).
Carver, L. & Schnitzer, J. in Biomedical Features of Drug Concentrating on (eds Muzykantov, V. R. & Torchilin, V. P.) 107–128 (Springer Science+Enterprise Media, 2002).
Valadon, P. et al. Designed auto-assembly of nanostreptabodies for speedy tissue-specific focusing on in vivo. J. Biol. Chem. 285, 713–722 (2010).
Schnitzer, J. E. in Complete Organ Approaches to Mobile Metabolism: Permeation, Mobile Uptake, and Product Formation (eds Bassingthwaighte, J. B. et al.) 31–69 (Springer New York, 1998).
Kadam, A. H. et al. Concentrating on caveolae to pump bispecific antibody to TGF-beta into diseased lungs permits ultra-low dose therapeutic efficacy. PLoS ONE 17, e0276462 (2022).
Vallabhajosula, S., Killeen, R. P. & Osborne, J. R. Altered biodistribution of radiopharmaceuticals: position of radiochemical/pharmaceutical purity, physiological, and pharmacologic components. Semin. Nucl. Med. 40, 220–241 (2010).
Cavina, L. et al. Design of radioiodinated prescribed drugs: structural options affecting metabolic stability in direction of in vivo deiodination. Eur. J. Org. Chem. 2017, 3387–3414 (2017).
Nagarajah, J., Janssen, M., Hetkamp, P. & Jentzen, W. Iodine symporter focusing on with (124)I/(131)I theranostics. J. Nucl. Med. 58, 34s–38s (2017).
Bruns, R. R. & Palade, G. E. Research on blood capillaries. II. Transport of ferritin molecules throughout the wall of muscle capillaries. J. Cell Biol. 37, 277–299 (1968).
Bundgaard, M. Vesicular transport in capillary endothelium: does it happen? Fed. Proc. 42, 2425–2430 (1983).
Severs, N. J. Caveolae: static inpocketings of the plasma membrane, dynamic vesicles or plain artifact? J. Cell Sci. 90, 341–348 (1988).
Thomsen, P., Roepstorff, Okay., Stahlhut, M. & van Deurs, B. Caveolae are extremely motionless plasma membrane microdomains, which aren’t concerned in constitutive endocytic trafficking. Mol. Biol. Cell 13, 238–250 (2002).
McIntosh, D. P. & Schnitzer, J. E. Caveolae require intact VAMP for focused transport in vascular endothelium. Am. J. Physiol. Coronary heart Circ. Physiol. 277, H2222–H2232 (1999).
Schnitzer, J. E., Allard, J. & Oh, P. NEM inhibits transcytosis, endocytosis, and capillary permeability: implication of caveolae fusion in endothelia. Am. J. Physiol. 268, H48–H55 (1995).
Schnitzer, J. E., Liu, J. & Oh, P. Endothelial caveolae have the molecular transport equipment for vesicle budding, docking, and fusion together with VAMP, NSF, SNAP, annexins, and GTPases. J. Biol. Chem. 270, 14399–14404 (1995).
Stan, R. V., Kubitza, M. & Palade, G. E. PV-1 is a element of the fenestral and stomatal diaphragms in fenestrated endothelia. Proc. Natl Acad. Sci. USA 96, 13203–13207 (1999).
Shuvaev, V. V. et al. Spatially managed meeting of affinity ligand and enzyme cargo permits focusing on ferritin nanocarriers to caveolae. Biomaterials 185, 348–359 (2018).
Yu, M. & Zheng, J. Clearance pathways and tumor focusing on of imaging nanoparticles. ACS Nano 9, 6655–6674 (2015).
BioReady™ 40 nm Carboxyl Gold Covalent Conjugation Protocol (nanoComposix, Fortis Life Sciences, 2024); https://cdn.shopify.com/s/recordsdata/1/0257/8237/recordsdata/BioReady_40_nm_Carboxyl_Gold_Conjugation_Protocol_v2.1.pdf?v=1670554597