Yang, M. et al. Perovskite ink with huge processing window for scalable high-efficiency photo voltaic cells. Nat. Vitality 2, 17038 (2017).
Zhao, D. et al. Environment friendly two-terminal all-perovskite tandem photo voltaic cells enabled by high-quality low-bandgap absorber layers. Nat. Vitality 3, 1093–1100 (2018).
Wehrenfennig, C., Eperon, G. E., Jonston, M. B., Snaith, H. J. & Herz, L. M. Excessive cost provider mobilities and lifetimes in organolead trihalide perovskites. Adv. Mater. 26, 1584–1589 (2014).
Shi, D. et al. Low trap-state density and lengthy provider diffusion in organolead trihalide perovskite single crystals. Science 347, 6221 (2015).
Kim, G. et al. Influence of pressure leisure on efficiency of α-formamidinium lead iodide perovskite photo voltaic cells. Science 370, 108–112 (2020).
Finest Analysis-Cell Efficiencies (Nationwide Renewable Vitality Laboratory, 2024); https://www.nrel.gov/pv/cell-efficiency.html
Ma, C. et al. Unveiling facet-dependent degradation and aspect engineering for steady perovskite photo voltaic cells. Science 379, 173–178 (2023).
Park, J. et al. Managed development of perovskite layers with unstable alkylammonium chlorides. Nature 616, 724–730 (2023).
Nakamura, M., Yamaguchi, Ok., Kimoto, Y., Kato, T. & Sugimoto, H. Cd-free Cu(In,Ga)(Se,S)2 thin-film photo voltaic cell with document effectivity of 23.35%. IEEE J. Photovolt. 9, 1863–1867 (2019).
Chirila, A. et al. Potassium-induced floor modification of Cu(In,Ga)Se2 skinny movies for high-efficiency photo voltaic cells. Nat. Mater. 12, 1107–1111 (2013).
Qarony, W. et al. Environment friendly amorphous silicon photo voltaic cells: characterization, optimization, and optical loss evaluation. Outcomes Phys. 7, 4287–4293 (2017).
Matsui, T. et al. Excessive-efficiency thin-film silicon photo voltaic cells realized by integrating steady a-Si:H absorbers into improved machine design. Jpn. J. Appl. Phys. 54, 08KB10 (2015).
Wang, J. et al. Binary natural photo voltaic cells with 19.2% effectivity enabled by strong additive. Adv. Mater. 35, 2301583 (2023).
Fu, J. et al. 19.31% binary natural photo voltaic cell and low non-radiative recombination enabled by non-monotonic intermediate state transition. Nat. Commun. 14, 1760 (2023).
Sha, W. E. I., Ren, X., Chen, L. & Choy, W. C. H. The effectivity restrict of CH3NH3PbI3 perovskite photo voltaic cells. Appl. Phys. Lett. 106, 221104 (2015).
Najafi, L. et al. MoS2 quantum dot/graphene hybrids for superior interface engineering of a CH3NH3PbI3 perovskite photo voltaic cell with an effectivity of over 20. ACS Nano 12, 10736–10754 (2018).
Kakavelakis, G. et al. Extending the continual working lifetime of perovskite photo voltaic cells with a molybdenum disulfide gap extraction interlayer. Adv. Vitality Mater. 8, 1702287 (2018).
Zhao, Y. et al. A bilayer conducting polymer construction for planar perovskite photo voltaic cells with over 1,400 hours operational stability at elevated temperatures. Nat. Vitality 7, 144–152 (2021).
Tang, G. et al. Answer-phase epitaxial development of perovskite movies on 2D materials flakes for high-performance photo voltaic cells. Adv. Mater. 31, 1807689 (2019).
Sadegh, F. et al. Extremely environment friendly, steady and hysteresis‒much less planar perovskite photo voltaic cell primarily based on chemical tub handled Zn2SnO4 electron transport layer. Nano Vitality 75, 105038 (2020).
Sadhu, A. et al. Twin position of Cu-chalcogenide as hole-transporting layer and interface passivator for p–i–n structure perovskite photo voltaic cell. Adv. Funct. Mater. 31, 2103807 (2021).
Yang, Y. et al. Modulation of perovskite crystallization processes in direction of extremely environment friendly and steady perovskite photo voltaic cells with MXene quantum dot-modified SnO2. Vitality Environ. Sci. 14, 3446–3454 (2021).
Huang, C. et al. Environment friendly planar perovskite photo voltaic cells with decreased hysteresis and enhanced open circuit voltage through the use of PW12–TiO2 as electron transport layer. ACS Appl. Mater. Interfaces 8, 8520–8526 (2016).
Wang, X. et al. TiO2 nanotube arrays primarily based versatile perovskite photo voltaic cells with clear carbon nanotube electrode. Nano Vitality 11, 728–235 (2015).
Shao, J. et al. Pore dimension dependent hysteresis elimination in perovskite photo voltaic cells primarily based on extremely porous TiO2 movies with extensively tunable pores of 15–34 nm. Chem. Mater. 28, 7134–7144 (2016).
Yang, J., Fransishyn, Ok. M. & Kelly, T. L. Evaluating the impact of mesoporous and planar steel oxides on the steadiness of methylammonium lead iodide skinny movies. Chem. Mater. 28, 7344–7352 (2016).
Wang, B. et al. Hydrophobic polycarbonate monolith with mesoporous nest-like construction: an efficient oil sorbent. Mater. Lett. 188, 201–204 (2017).
Bi, C. et al. Non-wetting surface-driven high-aspect-ratio crystalline grain development for environment friendly hybrid perovskite photo voltaic cells. Nat. Commun. 6, 7747 (2015).
Li, Y. et al. Faulty TiO2 with excessive photoconductive acquire for environment friendly and steady planar heterojunction perovskite photo voltaic cells. Nat. Commun. 7, 12446 (2016).
Zhang, Y. et al. Dopamine-crosslinked TiO2/perovskite layer for environment friendly and photostable perovskite photo voltaic cells below full spectral steady illumination. Nano Vitality 56, 733–740 (2019).
Zhang, W. et al. Excessive-performance photocatalytic nonoxidative conversion of methane to ethane and hydrogen by heteroatoms-engineered TiO2. Nat. Commun. 13, 2806 (2022).
Jiang, Q. et al. Enhanced electron extraction utilizing SnO2 for high-efficiency planar-structure HC(NH2)2PbI3-based perovskite photo voltaic cells. Nat. Vitality 2, 16177 (2016).
Anaraki, E. H. et al. Extremely environment friendly and steady planar perovskite photo voltaic cells by solution-processed tin oxide. Vitality Environ. Sci. 9, 3128 (2016).
Jeong, M. et al. Massive-area perovskite photo voltaic cells using spiro-Naph gap transport materials. Nat. Photon. 16, 119–125 (2022).
Lee, C. et al. Anomalous lattice vibrations of single- and few-layer MoS2. ACS Nano 4, 2695–2700 (2010).
Li, H. et al. From bulk to monolayer MoS2: evolution of Raman scattering. Adv. Funct. Mater. 22, 1385–1390 (2012).
Park, S. et al. Section engineering of transition steel dichalcogenides with unprecedentedly excessive part purity, stability, and scalability through molten-metal-assisted intercalation. Adv. Mater. 32, 200189 (2020).
Zhang, H. et al. Multifunctional crosslinking-enabled strain-regulating crystallization for steady, environment friendly α-FAPbI3-based perovskite photo voltaic cells. Adv. Mater. 33, 200847 (2021).
Zhu, C. et al. Pressure engineering in perovskite photo voltaic cells and its impacts on provider dynamics. Nat. Commun. 10, 815 (2019).
Zhang, J. et al. Elimination of interfacial lattice mismatch and detrimental response by self-assembled layer dual-passivation for environment friendly and steady inverted perovskite photo voltaic cells. Adv. Vitality Mater. 12, 2103674 (2022).
Steele, J. A. et al. Direct laser writing of δ- to α-phase transformation in formamidinium lead iodide. ACS Nano 11, 8072–8083 (2017).
Liu, J. et al. Electron injection and defect passivation for high-efficiency mesoporous perovskite photo voltaic cells. Science 383, 1198–1204 (2024).
Wen, Z. et al. Excessive-quality van der Waals epitaxial CsPbBr3 movie grown on monolayer graphene lined TiO2 for high-performance photo voltaic cells. Vitality Environ. Mater. 7, 12680 (2024).
Moghadamzadeh, S. et al. Spontaneous enhancement of the steady energy conversion effectivity in perovskite photo voltaic cells. J. Mater. Chem. A 8, 670 (2020).
Valadi, Ok. et al. Metallic oxide electron transport supplies for perovskite photo voltaic cells: a assessment. Environ. Chem. Lett. 19, 2185–2207 (2021).
Shin, S. S., Lee, S. J. & Seok, S. I. Metallic oxide cost transport layers for environment friendly and steady perovskite photo voltaic cells. Adv. Funct. Mater. 29, 1900455 (2019).
Chen, T., Xie, J. & Gao, P. Ultraviolet photocatalytic degradation of perovskite photo voltaic cells: progress, challenges, and methods. Adv. Vitality Sustainability Res. 3, 2100218 (2022).
Leijtens, T. et al. Overcoming ultraviolet mild instability of sensitized TiO2 with meso-super structured organometal tri-halide perovskite photo voltaic cells. Nat. Commun. 4, 2885 (2013).
Wojciechowski, Ok., Saliba, M., Leijtens, T., Abate, A. & Snaith, H. J. Sub-150 °C processed meso-super structured perovskite photo voltaic cells with enhanced effectivity. Vitality Environ. Sci. 7, 1142 (2014).
Shi, P. et al. Oriented nucleation in formamidinium perovskite for photovoltaics. Nature 620, 323–327 (2023).
Sidhik, S. et al. Deterministic fabrication of 3D/2D perovskite bilayer stacks for sturdy and environment friendly photo voltaic cells. Science 377, 1425–1430 (2022).
Zou, Y. et al. A crystal capping layer for formation of black-phase FAPbI3 perovskite in humid air. Science 385, 161–167 (2024).
Li, N. et al. Liquid medium annealing for fabricating sturdy perovskite photo voltaic cells with improved reproducibility. Science 373, 561–567 (2021).
Dai, Z. et al. Interfacial toughening with self-assembled monolayers enhances perovskite photo voltaic cell reliability. Science 372, 618–622 (2021).
Huang, Z. et al. Anion–π interactions suppress part impurities in FAPbI3 photo voltaic cells. Nature 623, 531–537 (2023).
Luo, C. et al. Engineering the buried interface in perovskite photo voltaic cells through lattice-matched electron transport layer. Nat. Photon. 17, 856–864 (2023).
Meng, Y. et al. Pre-buried ETL with bottom-up technique towards versatile perovskite photo voltaic cells with effectivity over 23%. Adv. Funct. Mater. 33, 2214788 (2023).
Kim, J. et al. All-solution-processed van der Waals heterostructures for wafer-scale electronics. Adv. Mater. 34, 2106110 (2022).
Lin, Z. et al. Answer-processable 2D semiconductors for high-performance large-area electronics. Nature 562, 254–258 (2018).