Dixon SJ, Lemberg KM, Lamprecht MR, Skouta R, Zaitsev EM, Gleason CE, et al. Ferroptosis: an iron-dependent type of nonapoptotic cell loss of life. Cell. 2012;149(5):1060–72.
Yagoda N, von Rechenberg M, Zaganjor E, Bauer AJ, Yang WS, Fridman DJ, et al. RAS-RAF-MEK-dependent oxidative cell loss of life involving voltage-dependent anion channels. Nature. 2007;447(7146):864–8.
Siegel RL, Miller KD, Fuchs HE, Jemal A. Most cancers statistics, 2022. CA Most cancers J Clin. 2022;72(1):7–33.
Nussinov R, Tsai C-J, Jang H. Anticancer drug resistance: an replace and perspective. Drug Resist Updat. 2021;59: 100796.
Hassannia B, Vandenabeele P, Vanden BT. Concentrating on ferroptosis to iron out most cancers. Most cancers Cell. 2019;35(6):830–49.
Zhang C, Liu X, Jin S, Chen Y, Guo R. Ferroptosis in most cancers remedy: a novel method to reversing drug resistance. Mol Most cancers. 2022;21(1):47.
Chen P, Li X, Zhang R, Liu S, Xiang Y, Zhang M, et al. Combinative therapy of β-elemene and cetuximab is delicate to KRAS mutant colorectal most cancers cells by inducing ferroptosis and inhibiting epithelial–mesenchymal transformation. Theranostics. 2020;10(11):5107–19.
Zou Y, Henry WS, Ricq EL, Graham ET, Phadnis VV, Maretich P, et al. Plasticity of ether lipids promotes ferroptosis susceptibility and evasion. Nature. 2020;585(7826):603–8.
Stockwell BR, Friedmann Angeli JP, Bayir H, Bush AI, Conrad M, Dixon SJ, et al. Ferroptosis: a regulated cell loss of life nexus linking metabolism, redox biology, and illness. Cell. 2017;171(2):273–85.
Wagner V, Dullaart A, Bock A-Ok, Zweck A. The rising nanomedicine panorama. Nat Biotechnol. 2006;24(10):1211–7.
Zhang D, Teng Ok-X, Zhao L, Niu L-Y, Yang Q-Z. Extremely-small nano-assemblies as tumor-targeted and renal clearable theranostic agent for photodynamic remedy. Adv Mater. 2023;35(19): e2209789.
Fu X, Chen T, Tune Y, Feng C, Chen H, Zhang Q, et al. mRNA supply by a pH-responsive DNA nano-hydrogel. Small. 2021;17(29): e2101224.
Wang L, Huang J, Chen H, Wu H, Xu Y, Li Y, et al. Exerting enhanced permeability and retention impact pushed supply by ultrafine iron oxide nanoparticles with T1–T2 switchable magnetic resonance imaging distinction. ACS Nano. 2017;11(5):4582–92.
Jiang Z, Li Y, Wei Z, Yuan B, Wang Y, Akakuru OU, et al. Strain-induced amorphous zeolitic imidazole frameworks with decreased toxicity and elevated tumor accumulation improves therapeutic efficacy in vivo. Bioact Mater. 2021;6(3):740–8.
Gao Q, Feng J, Liu W, Wen C, Wu Y, Liao Q, et al. Alternatives and challenges for co-delivery nanomedicines based mostly on mixture of phytochemicals with chemotherapeutic medicine in most cancers therapy. Adv Drug Deliv Rev. 2022;188: 114445.
Liang S, Yao J, Liu D, Rao L, Chen X, Wang Z. Harnessing nanomaterials for most cancers sonodynamic immunotherapy. Adv Mater. 2023;35(33): e2211130.
Liu Y, Bhattarai P, Dai Z, Chen X. Photothermal remedy and photoacoustic imaging by way of nanotheranostics in combating most cancers. Chem Soc Rev. 2019;48(7):2053–108.
Ji X, Tang Z, Liu H, Kang Y, Chen L, Dong J, et al. Nanoheterojunction-mediated thermoelectric technique for most cancers surgical adjuvant therapy and β-elemene mixture remedy. Adv Mater. 2023;35(8): e2207391.
Liu C, Solar S, Feng Q, Wu G, Wu Y, Kong N, et al. Arsenene nanodots with selective killing results and their low-dose mixture with ß-elemene for most cancers remedy. Adv Mater. 2021;33(37): e2102054.
Newton Ok, Strasser A, Kayagaki N, Dixit VM. Cell loss of life. Cell. 2024;187(2):235–56.
Tang D, Kang R, Berghe TV, Vandenabeele P, Kroemer G. The molecular equipment of regulated cell loss of life. Cell Res. 2019;29(5):347–64.
Dolma S, Lessnick SL, Hahn WC, Stockwell BR. Identification of genotype-selective antitumor brokers utilizing artificial deadly chemical screening in engineered human tumor cells. Most cancers Cell. 2003;3(3):285–96.
Yang WS, Stockwell BR. Artificial deadly screening identifies compounds activating iron-dependent, nonapoptotic cell loss of life in oncogenic-RAS-harboring most cancers cells. Chem Biol. 2008;15(3):234–45.
Seiler A, Schneider M, Förster H, Roth S, Wirth EK, Culmsee C, et al. Glutathione peroxidase 4 senses and interprets oxidative stress into 12/15-lipoxygenase dependent- and AIF-mediated cell loss of life. Cell Metab. 2008;8(3):237–48.
Doll S, Proneth B, Tyurina YY, Panzilius E, Kobayashi S, Ingold I, et al. ACSL4 dictates ferroptosis sensitivity by shaping mobile lipid composition. Nat Chem Biol. 2017;13(1):91–8.
Pisoschi AM, Pop A. The position of antioxidants within the chemistry of oxidative stress: a evaluate. Eur J Med Chem. 2015;97:55–74.
Grange C, Lux F, Brichart T, David L, Couturier A, Leaf DE, et al. Iron as an rising therapeutic goal in critically ailing sufferers. Crit Care. 2023;27(1):475.
Galy B, Conrad M, Muckenthaler M. Mechanisms controlling mobile and systemic iron homeostasis. Nat Rev Mol Cell Biol. 2024;25(2):133–55.
Knutson MD. Non-transferrin-bound iron transporters. Free Radic Biol Med. 2019;133:101–11.
Li Z, Jiang L, Chew SH, Hirayama T, Sekido Y, Toyokuni S. Carbonic anhydrase 9 confers resistance to ferroptosis/apoptosis in malignant mesothelioma underneath hypoxia. Redox Biol. 2019;26: 101297.
Barroso MF, de-los-Santos-Álvarez N, Lobo-Castañón MJ, Miranda-Ordieres AJ, Delerue-Matos C, Oliveira MBPP, Tuñón-Blanco P. DNA-based biosensor for the electrocatalytic dedication of antioxidant capability in drinks. Biosens Bioelectron. 2011;26(5):2396–401.
Mühlenhoff U, Molik S, Godoy JR, Uzarska MA, Richter N, Seubert A, et al. Cytosolic monothiol glutaredoxins operate in intracellular iron sensing and trafficking by way of their certain iron-sulfur cluster. Cell Metab. 2010;12(4):373–85.
Billesbølle CB, Azumaya CM, Kretsch RC, Powers AS, Gonen S, Schneider S, et al. Construction of hepcidin-bound ferroportin reveals iron homeostatic mechanisms. Nature. 2020;586(7831):807–11.
Hentze MW, Kühn LC. Molecular management of vertebrate iron metabolism: mRNA-based regulatory circuits operated by iron, nitric oxide, and oxidative stress. Proc Natl Acad Sci USA. 1996;93(16):8175–82.
Tybl E, Gunshin H, Gupta S, Barrientos T, Bonadonna M, Celma Nos F, et al. Management of systemic iron homeostasis by the three′ iron-responsive factor of divalent steel transporter 1 in mice. Hemasphere. 2020;4(5): e459.
Ghosh MC, Zhang D-L, Jeong SY, Kovtunovych G, Ollivierre-Wilson H, Noguchi A, et al. Deletion of iron regulatory protein 1 causes polycythemia and pulmonary hypertension in mice by means of translational derepression of HIF2α. Cell Metab. 2013;17(2):271–81.
Gao M, Monian P, Pan Q, Zhang W, Xiang J, Jiang X. Ferroptosis is an autophagic cell loss of life course of. Cell Res. 2016;26(9):1021–32.
Hou W, Xie Y, Tune X, Solar X, Lotze MT, Zeh HJ, et al. Autophagy promotes ferroptosis by degradation of ferritin. Autophagy. 2016;12(8):1425–8.
Ganz T. Hepcidin and iron regulation, 10 years later. Blood. 2011;117(17):4425–33.
Yamaji S, Sharp P, Ramesh B, Srai SK. Inhibition of iron transport throughout human intestinal epithelial cells by hepcidin. Blood. 2004;104(7):2178–80.
Ganz T. Systemic iron homeostasis. Physiol Rev. 2013;93(4):1721–41.
Zhang D-L, Senecal T, Ghosh MC, Ollivierre-Wilson H, Tu T, Rouault TA. Hepcidin regulates ferroportin expression and intracellular iron homeostasis of erythroblasts. Blood. 2011;118(10):2868–77.
Fernández-Mendívil C, Luengo E, Trigo-Alonso P, García-Magro N, Negredo P, López MG. Protecting position of microglial HO-1 blockade in ageing: implication of iron metabolism. Redox Biol. 2021;38: 101789.
Menon AV, Liu J, Tsai HP, Zeng L, Yang S, Asnani A, Kim J. Extra heme upregulates heme oxygenase 1 and promotes cardiac ferroptosis in mice with sickle cell illness. Blood. 2022;139(6):936–41.
Liang D, Minikes AM, Jiang X. Ferroptosis on the intersection of lipid metabolism and mobile signaling. Mol Cell. 2022;82(12):2215–27.
Samovich SN, Mikulska-Ruminska Ok, Dar HH, Tyurina YY, Tyurin VA, Souryavong AB, et al. Strikingly excessive exercise of 15-lipoxygenase in direction of di-polyunsaturated arachidonoyl/adrenoyl-phosphatidylethanolamines generates peroxidation alerts of ferroptotic cell loss of life. Angew Chem Int Ed Engl. 2024;63(9): e202314710.
Conrad M, Kagan VE, Bayir H, Pagnussat GC, Head B, Traber MG, Stockwell BR. Regulation of lipid peroxidation and ferroptosis in numerous species. Genes Dev. 2018;32(9–10):602–19.
Miotto G, Rossetto M, Di Paolo ML, Orian L, Venerando R, Roveri A, et al. Perception into the mechanism of ferroptosis inhibition by ferrostatin-1. Redox Biol. 2020;28: 101328.
Jiang X, Peng Q, Peng M, Oyang L, Wang H, Liu Q, et al. Mobile metabolism: a key participant in most cancers ferroptosis. Most cancers Commun. 2024;44(2):185–204.
Park MW, Cha HW, Kim J, Kim JH, Yang H, Yoon S, et al. NOX4 promotes ferroptosis of astrocytes by oxidative stress-induced lipid peroxidation by way of the impairment of mitochondrial metabolism in Alzheimer’s ailments. Redox Biol. 2021;41: 101947.
Yang X-X, Xu X, Wang M-F, Xu H-Z, Peng X-C, Han N, et al. A nanoreactor boosts chemodynamic remedy and ferroptosis for synergistic most cancers remedy utilizing molecular amplifier dihydroartemisinin. J Nanobiotechnol. 2022;20(1):230.
Stahl A, Hirsch DJ, Gimeno RE, Punreddy S, Ge P, Watson N, et al. Identification of the foremost intestinal fatty acid transport protein. Mol Cell. 1999;4(3):299–308.
Pan G, Ameur A, Enroth S, Bysani M, Nord H, Cavalli M, et al. PATZ1 down-regulates FADS1 by binding to rs174557 and is opposed by SP1/SREBP1c. Nucleic Acids Res. 2017;45(5):2408–22.
Markovic M, Ben-Shabat S, Keinan S, Aponick A, Zimmermann EM, Dahan A. Lipidic prodrug method for improved oral drug supply and remedy. Med Res Rev. 2019;39(2):579–607.
Shintoku R, Takigawa Y, Yamada Ok, Kubota C, Yoshimoto Y, Takeuchi T, et al. Lipoxygenase-mediated era of lipid peroxides enhances ferroptosis induced by erastin and RSL3. Most cancers Sci. 2017;108(11):2187–94.
Yang L, Cai X, Li R. Ferroptosis induced by pollution: an rising mechanism in environmental toxicology. Environ Sci Technol. 2024;58(5):2166–84.
Jiang Y, Mao C, Yang R, Yan B, Shi Y, Liu X, et al. EGLN1/c-Myc induced lymphoid-specific helicase inhibits ferroptosis by means of lipid metabolic gene expression adjustments. Theranostics. 2017;7(13):3293–305.
Xuan Y, Wang H, Yung MM, Chen F, Chan W-S, Chan Y-S, et al. SCD1/FADS2 fatty acid desaturases equipoise lipid metabolic exercise and redox-driven ferroptosis in ascites-derived ovarian most cancers cells. Theranostics. 2022;12(7):3534–52.
Xu H, Zhou S, Tang Q, Xia H, Bi F. Ldl cholesterol metabolism: new features and therapeutic approaches in most cancers. Biochim Biophys Acta Rev Most cancers. 2020;1874(1): 188394.
Liu W, Chakraborty B, Safi R, Kazmin D, Chang C-Y, McDonnell DP. Dysregulated ldl cholesterol homeostasis ends in resistance to ferroptosis rising tumorigenicity and metastasis in most cancers. Nat Commun. 2021;12(1):5103.
Li Y, Ran Q, Duan Q, Jin J, Wang Y, Yu L, et al. 7-Dehydrocholesterol dictates ferroptosis sensitivity. Nature. 2024;626(7998):411–8.
Chen X, Kang R, Kroemer G, Tang D. Broadening horizons: the position of ferroptosis in most cancers. Nat Rev Clin Oncol. 2021;18(5):280–96.
Solar X, Ou Z, Chen R, Niu X, Chen D, Kang R, Tang D. Activation of the p62-Keap1-NRF2 pathway protects towards ferroptosis in hepatocellular carcinoma cells. Hepatology. 2016;63(1):173–84.
Jiang L, Kon N, Li T, Wang S-J, Su T, Hibshoosh H, et al. Ferroptosis as a p53-mediated exercise throughout tumour suppression. Nature. 2015;520(7545):57–62.
Zhang Y, Shi J, Liu X, Feng L, Gong Z, Koppula P, et al. BAP1 hyperlinks metabolic regulation of ferroptosis to tumour suppression. Nat Cell Biol. 2018;20(10):1181–92.
Yang H, Yao X, Liu Y, Shen X, Li M, Luo Z. Ferroptosis nanomedicine: medical challenges and alternatives for modulating tumor metabolic and immunological panorama. ACS Nano. 2023;17(16):15328–53.
Doll S, Freitas FP, Shah R, Aldrovandi M, da Silva MC, Ingold I, et al. FSP1 is a glutathione-independent ferroptosis suppressor. Nature. 2019;575(7784):693–8.
Kraft VAN, Bezjian CT, Pfeiffer S, Ringelstetter L, Müller C, Zandkarimi F, et al. GTP cyclohydrolase 1/tetrahydrobiopterin counteract ferroptosis by means of lipid transforming. ACS Cent Sci. 2020;6(1):41–53.
Hamaï A, Cañeque T, Müller S, Mai TT, Hienzsch A, Ginestier C, et al. An iron hand over most cancers stem cells. Autophagy. 2017;13(8):1465–6.
Viswanathan VS, Ryan MJ, Dhruv HD, Gill S, Eichhoff OM, Seashore-Ludlow B, et al. Dependency of a therapy-resistant state of most cancers cells on a lipid peroxidase pathway. Nature. 2017;547(7664):453–7.
Rennekamp AJ. The ferrous awakens. Cell. 2017;171(6):1225–7.
Zhang H, Fan T, Chen W, Li Y, Wang B. Latest advances of two-dimensional supplies in good drug supply nano-systems. Bioact Mater. 2020;5(4):1071–86.
Klochkov SG, Neganova ME, Nikolenko VN, Chen Ok, Somasundaram SG, Kirkland CE, Aliev G. Implications of nanotechnology for the therapy of most cancers: current advances. Semin Most cancers Biol. 2021;69:190–9.
Luo R, Liu M, Tan T, Yang Q, Wang Y, Males L, et al. Rising significance and therapeutic potential of extracellular vesicles. Int J Biol Sci. 2021;17(10):2476–86.
Yang S, Wong KH, Hua P, He C, Yu H, Shao D, et al. ROS-responsive fluorinated polyethyleneimine vector to co-deliver shMTHFD2 and shGPX4 plasmids induces ferroptosis and apoptosis for most cancers remedy. Acta Biomater. 2022;140:492–505.
Yang C, Han M, Li R, Zhou L, Zhang Y, Duan L, et al. Curcumin nanoparticles inhibiting ferroptosis for the improved therapy of intracerebral hemorrhage. Int J Nanomed. 2021;16:8049–65.
Xia Y, Tang Y, Huang Z, Ke N, Zheng Y, Zhuang W, et al. Artesunate-loaded strong lipid nanoparticles resist esophageal squamous cell carcinoma by inducing ferroptosis by means of inhibiting the AKT/mTOR signaling. Cell Sign. 2024;117: 111108.
Wu C, Zhang F, Li B, Li Z, Xie X, Huang Y, et al. A self-assembly nano-prodrug for mixture remedy in triple-negative breast most cancers stem cells. Small. 2023;19(41): e2301600.
Feng W, Shi W, Liu S, Liu H, Liu Y, Ge P, Zhang H. Fe(III)-Shikonin supramolecular nanomedicine for mixed remedy of tumor by way of ferroptosis and necroptosis. Adv Healthc Mater. 2022;11(2): e2101926.
Fu F, Wang W, Wu L, Wang W, Huang Z, Huang Y, et al. Inhalable biomineralized liposomes for cyclic Ca2+-burst-centered endoplasmic reticulum stress enhanced lung most cancers ferroptosis remedy. ACS Nano. 2023;17(6):5486–502.
Liu H-J, Chen W, Wu G, Zhou J, Liu C, Tang Z, et al. Glutathione-scavenging nanoparticle-mediated PROTACs supply for focused protein degradation and amplified antitumor results. Adv Sci. 2023;10(16): e2207439.
Zhang F, Li F, Lu G-H, Nie W, Zhang L, Lv Y, et al. Engineering magnetosomes for ferroptosis/immunomodulation synergism in most cancers. ACS Nano. 2019;13(5):5662–73.
Cao Z, Liu X, Zhang W, Zhang Ok, Pan L, Zhu M, et al. Biomimetic macrophage membrane-camouflaged nanoparticles induce ferroptosis by selling mitochondrial harm in glioblastoma. ACS Nano. 2023;17(23):23746–60.
Zhang Z, Ji Y, Hu N, Yu Q, Zhang X, Li J, et al. Ferroptosis-induced anticancer impact of resveratrol with a biomimetic nano-delivery system in colorectal most cancers therapy. Asian J Pharm Sci. 2022;17(5):751–66.
Fang Y, Li L, Sui M, Jiang Q, Dong N, Shan A, Jiang J. Protein transduction system based mostly on tryptophan-zipper towards intracellular infections by way of inhibiting ferroptosis of macrophages. ACS Nano. 2023;17(13):12247–65.
Hou D-Y, Cheng D-B, Zhang N-Y, Wang Z-J, Hu X-J, Li X, et al. In vivo meeting enhanced binding impact augments tumor particular ferroptosis remedy. Nat Commun. 2024;15(1):454.
Wang W, Fu F, Huang Z, Wang W, Chen M, Yue X, et al. Inhalable biomimetic protein corona-mediated nanoreactor for self-amplified lung adenocarcinoma ferroptosis remedy. ACS Nano. 2022;16(5):8370–87.
Yang X, Li W, Li S, Chen S, Hu Z, He Z, et al. Fish oil-based microemulsion can effectively ship oral peptide blocking PD-1/PD-L1 and concurrently induce ferroptosis for most cancers immunotherapy. J Management Launch. 2024;365:654–67.
Kou L, Solar R, Jiang X, Lin X, Huang H, Bao S, et al. Tumor microenvironment-responsive, multistaged liposome induces apoptosis and ferroptosis by amplifying oxidative stress for enhanced most cancers remedy. ACS Appl Mater Interfaces. 2020;12(27):30031–43.
Chen W, Li Z, Yu N, Zhang L, Li H, Chen Y, et al. Bone-targeting exosome nanoparticles activate Keap1/Nrf2/GPX4 signaling pathway to induce ferroptosis in osteosarcoma cells. J Nanobiotechnol. 2023;21(1):355.
Wang R, Tune W, Zhu J, Shao X, Yang C, Xiong W, et al. Biomimetic nano-chelate diethyldithiocarbamate Cu/Fe for enhanced metalloimmunity and ferroptosis activation in glioma remedy. J Management Launch. 2024;368:84–96.
Nguyen NT, Kim J, Le XT, Lee WT, Lee ES, Oh KT, et al. Amplified fenton-based oxidative stress using ultraviolet upconversion luminescence-fueled nanoreactors for apoptosis-strengthened ferroptosis anticancer remedy. ACS Nano. 2023;17(1):382–401.
Guo X, Liu F, Deng J, Dai P, Qin Y, Li Z, et al. Electron-accepting micelles deplete decreased nicotinamide adenine dinucleotide phosphate and impair two antioxidant cascades for ferroptosis-induced tumor eradication. ACS Nano. 2020;14(11):14715–30.
Liu Y, Quan X, Li J, Huo J, Li X, Zhao Z, et al. Liposomes embedded with PEGylated iron oxide nanoparticles allow ferroptosis and mixture remedy in most cancers. Natl Sci Rev. 2023;10(1): nwac167.
Liu T, Liu W, Zhang M, Yu W, Gao F, Li C, et al. Ferrous-supply-regeneration nanoengineering for cancer-cell-specific ferroptosis together with imaging-guided photodynamic remedy. ACS Nano. 2018;12(12):12181–92.
Wang S, Li F, Qiao R, Hu X, Liao H, Chen L, et al. Arginine-rich manganese silicate nanobubbles as a ferroptosis-inducing agent for tumor-targeted theranostics. ACS Nano. 2018;12(12):12380–92.
Wang J, Tune W, Wang X, Xie Z, Zhang W, Jiang W, et al. Tumor-self-targeted “thermoferroptosis-sensitization” magnetic nanodroplets for multimodal imaging-guided tumor-specific remedy. Biomaterials. 2021;277: 121100.
Pan J, Wang Z, Huang X, Xue J, Zhang S, Guo X, Zhou S. Micro organism-derived outer-membrane vesicles hitchhike neutrophils to reinforce ischemic stroke remedy. Adv Mater. 2023;35(38): e2301779.
Shen Z, Liu T, Li Y, Lau J, Yang Z, Fan W, et al. Fenton-reaction-acceleratable magnetic nanoparticles for ferroptosis remedy of orthotopic mind tumors. ACS Nano. 2018;12(11):11355–65.
Lin J, Yang H, Zhang Y, Zou F, He H, Xie W, et al. Ferrocene-based polymeric nanoparticles carrying doxorubicin for oncotherapeutic mixture of chemotherapy and ferroptosis. Small. 2023;19(2): e2205024.
Wan X, Tune L, Pan W, Zhong H, Li N, Tang B. Tumor-targeted cascade nanoreactor based mostly on metal-organic frameworks for synergistic ferroptosis-starvation anticancer remedy. ACS Nano. 2020;14(9):11017–28.
Dharmalingam P, Talakatta G, Mitra J, Wang H, Derry PJ, Nilewski LG, et al. Pervasive genomic harm in experimental intracerebral hemorrhage: therapeutic potential of a mechanistic-based carbon nanoparticle. ACS Nano. 2020;14(3):2827–46.
Xue Y, Zhang L, Liu F, Dai F, Kong L, Ma D, Han Y. Alkaline, “nanoswords” coordinate ferroptosis-like bacterial loss of life for antibiosis and osseointegration. ACS Nano. 2023;17(3):2711–24.
Li Ok, Xu Ok, He Y, Yang Y, Tan M, Mao Y, et al. Oxygen self-generating nanoreactor mediated ferroptosis activation and immunotherapy in triple-negative breast most cancers. ACS Nano. 2023;17(5):4667–87.
Li Ok, Xu Ok, He Y, Lu L, Mao Y, Gao P, et al. Functionalized tumor-targeting nanosheets exhibiting Fe(II) overloading and GSH consumption for ferroptosis activation in liver tumor. Small. 2021;17(40): e2102046.
Liu Y, Zhao D, Yang F, Ye C, Chen Z, Chen Y, et al. In situ self-assembled phytopolyphenol-coordinated clever nanotherapeutics for multipronged administration of ferroptosis-driven Alzheimer’s illness. ACS Nano. 2024;18(11):7890–906.
Hassanzadeh P, Atyabi F, Dinarvand R. Technical and engineering issues for designing therapeutics and supply techniques. J Management Launch. 2023;353:411–22.
Zhao L-P, Wang H-J, Hu D, Hu J-H, Guan Z-R, Yu L-H, et al. β-Elemene induced ferroptosis by way of TFEB-mediated GPX4 degradation in EGFR wide-type non-small cell lung most cancers. J Adv Res. 2024;62:257–72.
Zhao P, Qiu J, Pan C, Tang Y, Chen M, Tune H, et al. Potential roles and molecular mechanisms of bioactive components in Curcumae Rhizoma towards breast most cancers. Phytomedicine. 2023;114: 154810.
Yu M, Gai C, Li Z, Ding D, Zheng J, Zhang W, et al. Focused exosome-encapsulated erastin induced ferroptosis in triple destructive breast most cancers cells. Most cancers Sci. 2019;110(10):3173–82.
Liu Y, Feng N. Nanocarriers for the supply of energetic components and fractions extracted from pure merchandise utilized in conventional Chinese language medication (TCM). Adv Colloid Interface Sci. 2015;221:60–76.
Zhai B, Wu Q, Wang W, Zhang M, Han X, Li Q, et al. Preparation, characterization, pharmacokinetics and anticancer results of PEGylated β-elemene liposomes. Most cancers Biol Med. 2020;17(1):60–75.
Liu Z-Y, Chen G, Wang X, Xu R-C, Wang F, Qi Z-R, et al. Synergistic photochemo results based mostly on light-activatable twin prodrug nanoparticles for efficient most cancers remedy. Adv Healthc Mater. 2023;12(27): e2301133.
Zhang X, Han Y, Huang W, Jin M, Gao Z. The affect of the intestine microbiota on the bioavailability of oral medicine. Acta Pharm Sin B. 2021;11(7):1789–812.
Baek M-J, Park J-H, Nguyen D-T, Kim D, Kim J, Kang I-M, Kim D-D. Bentonite as a water-insoluble amorphous strong dispersion matrix for enhancing oral bioavailability of poorly water-soluble medicine. J Management Launch. 2023;363:525–35.
Morrow JP, Mazrad ZAI, Bush AI, Kempe Ok. Poly(2-oxazoline)—ferrostatin-1 drug conjugates inhibit ferroptotic cell loss of life. J Management Launch. 2022;350:193–203.
Chen P, Wu Q, Feng J, Yan L, Solar Y, Liu S, et al. Erianin, a novel dibenzyl compound in Dendrobium extract, inhibits lung most cancers cell development and migration by way of calcium/calmodulin-dependent ferroptosis. Sign Transduct Goal Ther. 2020;5(1):51.
Kong N, Chen X, Feng J, Duan T, Liu S, Solar X, et al. Baicalin induces ferroptosis in bladder most cancers cells by downregulating FTH1. Acta Pharm Sin B. 2021;11(12):4045–54.
Zou Y, Wang S, Zhang H, Gu Y, Chen H, Huang Z, et al. The triangular relationship between conventional Chinese language medicines, intestinal flora, and colorectal most cancers. Med Res Rev. 2024;44(2):539–67.
Wang S, Fu J-L, Hao H-F, Jiao Y-N, Li P-P, Han S-Y. Metabolic reprogramming by conventional Chinese language medication and its position in efficient most cancers remedy. Pharmacol Res. 2021;170: 105728.
Tang W, Chen Z, Zhang W, Cheng Y, Zhang B, Wu F, et al. The mechanisms of sorafenib resistance in hepatocellular carcinoma: theoretical foundation and therapeutic features. Sign Transduct Goal Ther. 2020;5(1):87.
Costa I, Barbosa DJ, Benfeito S, Silva V, Chavarria D, Borges F, et al. Molecular mechanisms of ferroptosis and their involvement in mind ailments. Pharmacol Ther. 2023;244: 108373.
Tong R, Feng X, Solar J, Ling Z, Wang J, Li S, et al. Co-delivery of siNRF2 and sorafenib by a “click on” twin functioned hyperbranched nanocarrier for synergistically inducing ferroptosis in hepatocellular carcinoma. Small. 2024;20(21): e2307273.
Zhang J, Li X, Huang L. Anticancer actions of phytoconstituents and their liposomal focusing on methods towards tumor cells and the microenvironment. Adv Drug Deliv Rev. 2020;154–155:245–73.
Zoulikha M, Huang F, Wu Z, He W. COVID-19 irritation and implications in drug supply. J Management Launch. 2022;346:260–74.
Liu C, Shi Q, Huang X, Koo S, Kong N, Tao W. mRNA-based most cancers therapeutics. Nat Rev Most cancers. 2023;23(8):526–43.
Hu B, Zhong L, Weng Y, Peng L, Huang Y, Zhao Y, Liang X-J. Therapeutic siRNA: cutting-edge. Sign Transduct Goal Ther. 2020;5(1):101.
Guo W, Wu Z, Chen J, Guo S, You W, Wang S, et al. Nanoparticle supply of miR-21-3p sensitizes melanoma to anti-PD-1 immunotherapy by selling ferroptosis. J Immunother Most cancers. 2022;10(6): e004381.
Wu Q, Hu Y, Yu B, Hu H, Xu F-J. Polysaccharide-based tumor microenvironment-responsive drug supply techniques for most cancers remedy. J Management Launch. 2023;362:19–43.
Fan T, Zhang M, Yang J, Zhu Z, Cao W, Dong C. Therapeutic most cancers vaccines: developments, challenges, and prospects. Sign Transduct Goal Ther. 2023;8(1):450.
Zhou D, Duan Z, Li Z, Ge F, Wei R, Kong L. The importance of glycolysis in tumor development and its relationship with the tumor microenvironment. Entrance Pharmacol. 2022;13:1091779.
Wang Z-H, Peng W-B, Zhang P, Yang X-P, Zhou Q. Lactate within the tumour microenvironment: from immune modulation to remedy. EBioMedicine. 2021;73: 103627.
Mirhadi E, Mashreghi M, Faal Maleki M, Alavizadeh SH, Arabi L, Badiee A, Jaafari MR. Redox-sensitive nanoscale drug supply techniques for most cancers therapy. Int J Pharm. 2020;589: 119882.
Yu S-X, Liang Z-M, Wu Q-B, Shou L, Huang X-X, Zhu Q-R, et al. A novel diagnostic and therapeutic technique for most cancers sufferers by integrating Chinese language medication syndrome differentiation and precision medication. Chin J Integr Med. 2022;28(10):867–71.
Lu Y, Fan L, Wang J, Hu M, Wei B, Shi P, et al. Most cancers cell membrane-based supplies for biomedical purposes. Small. 2024;20(7): e2306540.
Zhao J, Liu Y, Zhu L, Li J, Liu Y, Luo J, et al. Tumor cell membrane-coated steady electrochemical sensor for GLUT1 inhibitor screening. J Pharm Anal. 2023;13(6):673–82.
Li Y, Zhang R, Wan Q, Hu R, Ma Y, Wang Z, et al. Malicious program-like nano-AIE aggregates based mostly on homologous focusing on technique and their photodynamic remedy in anticancer software. Adv Sci. 2021;8(23): e2102561.
Cruz ALS, Barreto EDA, Fazolini NPB, Viola JPB, Bozza PT. Lipid droplets: platforms with a number of features in most cancers hallmarks. Cell Dying Dis. 2020;11(2):105.
Dierge E, Debock E, Guilbaud C, Corbet C, Mignolet E, Mignard L, et al. Peroxidation of n-3 and n-6 polyunsaturated fatty acids within the acidic tumor surroundings results in ferroptosis-mediated anticancer results. Cell Metab. 2021;33(8):1701–15.
Wu D, Chen Q, Chen X, Han F, Chen Z, Wang Y. The blood–mind barrier: construction, regulation, and drug supply. Sign Transduct Goal Ther. 2023;8(1):217.
Kim J, Jo C, Lim W-G, Jung S, Lee YM, Lim J, et al. Programmed nanoparticle-loaded nanoparticles for deep-penetrating 3D most cancers remedy. Adv Mater. 2018;30: e1707557.
Si J, Shao S, Shen Y, Wang Ok. Macrophages as energetic nanocarriers for focused early and adjuvant most cancers chemotherapy. Small. 2016;12(37):5108–19.
Upton DH, Ung C, George SM, Tsoli M, Kavallaris M, Ziegler DS. Challenges and alternatives to penetrate the blood–mind barrier for mind most cancers remedy. Theranostics. 2022;12(10):4734–52.
Dong X. Present methods for mind drug supply. Theranostics. 2018;8(6):1481–93.
Zhong Z, He X, Ge J, Zhu J, Yao C, Cai H, et al. Discovery of small-molecule compounds and pure merchandise towards Parkinson’s illness: pathological mechanism and structural modification. Eur J Med Chem. 2022;237: 114378.
Li J, Zhao J, Tan T, Liu M, Zeng Z, Zeng Y, et al. Nanoparticle drug supply system for glioma and its efficacy enchancment methods: a complete evaluate. Int J Nanomed. 2020;15:2563–82.
Li J, Zeng H, You Y, Wang R, Tan T, Wang W, et al. Energetic focusing on of orthotopic glioma utilizing biomimetic liposomes co-loaded elemene and cabazitaxel modified by transferritin. J Nanobiotechnol. 2021;19(1):289.
Wang X, Zhao L, Wang C, Wang L, Wu H, Tune X, et al. Potent nanoreactor-mediated ferroptosis-based technique for the reversal of most cancers chemoresistance to sorafenib. Acta Biomater. 2023;159:237–46.
Dias MP, Moser SC, Ganesan S, Jonkers J. Understanding and overcoming resistance to PARP inhibitors in most cancers remedy. Nat Rev Clin Oncol. 2021;18(12):773–91.
Zheng X, Tune X, Zhu G, Pan D, Li H, Hu J, et al. Nanomedicine combats drug resistance in lung most cancers. Adv Mater. 2024;36(3): e2308977.
Hellmann MD, Li BT, Chaft JE, Kris MG. Chemotherapy stays an important factor of customized look after individuals with lung cancers. Ann Oncol. 2016;27(10):1829–35.
Bao W, Liu X, Lv Y, Lu G-H, Li F, Zhang F, et al. Nanolongan with a number of on-demand conversions for ferroptosis-apoptosis mixed anticancer remedy. ACS Nano. 2019;13(1):260–73.
Li X, Lovell JF, Yoon J, Chen X. Medical improvement and potential of photothermal and photodynamic therapies for most cancers. Nat Rev Clin Oncol. 2020;17(11):657–74.
Geng L, Lu T, Jing H, Zhou Y, Liang X, Li J, Li N. Iron-based and BRD4-downregulated technique for amplified ferroptosis based mostly on pH-sensitive/NIR-II-boosted nano-matchbox. Acta Pharm Sin B. 2023;13(2):863–78.
Vozenin M-C, Bourhis J, Durante M. In the direction of medical translation of FLASH radiotherapy. Nat Rev Clin Oncol. 2022;19(12):791–803.
De Ruysscher D, Niedermann G, Burnet NG, Siva S, Lee AWM, Hegi-Johnson F. Radiotherapy toxicity. Nat Rev Dis Prim. 2019;5(1):13.
Zeng L, Ding S, Cao Y, Li C, Zhao B, Ma Z, et al. A MOF-based potent ferroptosis inducer for enhanced radiotherapy of triple destructive breast most cancers. ACS Nano. 2023;17(14):13195–210.
Zhang Y, Zhang Z. The historical past and advances in most cancers immunotherapy: understanding the traits of tumor-infiltrating immune cells and their therapeutic implications. Cell Mol Immunol. 2020;17(8):807–21.
Finck AV, Blanchard T, Roselle CP, Golinelli G, June CH. Engineered mobile immunotherapies in most cancers and past. Nat Med. 2022;28(4):678–89.
Yang Z, Gao D, Zhao J, Yang G, Guo M, Wang Y, et al. Thermal immuno-nanomedicine in most cancers. Nat Rev Clin Oncol. 2023;20(2):116–34.
Zhao L-P, Hu J-H, Hu D, Wang H-J, Huang C-G, Luo R-H, et al. Hyperprogression, a problem of PD-1/PD-L1 inhibitors remedies: potential mechanisms and coping methods. Biomed Pharmacother. 2022;150: 112949.
Solar Y, Lian T, Huang Q, Chang Y, Li Y, Guo X, et al. Nanomedicine-mediated regulated cell loss of life in most cancers immunotherapy. J Management Launch. 2023;364:174–94.
Martin-Sanchez D, Ruiz-Andres O, Poveda J, Carrasco S, Cannata-Ortiz P, Sanchez-Niño MD, et al. Ferroptosis, however not necroptosis, is necessary in nephrotoxic folic acid-induced AKI. J Am Soc Nephrol. 2017;28(1):218–29.
Wiernicki B, Maschalidi S, Pinney J, Adjemian S, Vanden Berghe T, Ravichandran KS, Vandenabeele P. Most cancers cells dying from ferroptosis impede dendritic cell-mediated anti-tumor immunity. Nat Commun. 2022;13(1):3676.
Jiang Z, Lim S-O, Yan M, Hsu JL, Yao J, Wei Y, et al. TYRO3 induces anti-PD-1/PD-L1 remedy resistance by limiting innate immunity and tumoral ferroptosis. J Clin Make investments. 2021;131(8): e139434.
Wang W, Inexperienced M, Choi JE, Gijón M, Kennedy PD, Johnson JK, et al. CD8+ T cells regulate tumour ferroptosis throughout most cancers immunotherapy. Nature. 2019;569(7755):270–4.
Pei Z, Lei H, Wu J, Tang W, Wei Ok, Wang L, et al. Bioactive vanadium disulfide nanostructure with “twin” antitumor results of vanadate and gasoline for immune-checkpoint blockade-enhanced most cancers immunotherapy. ACS Nano. 2023;17(17):17105–21.
Wang G, Xie L, Li B, Sang W, Yan J, Li J, et al. A nanounit technique reverses immune suppression of exosomal PD-L1 and is related to enhanced ferroptosis. Nat Commun. 2021;12(1):5733.
Xie L, Li J, Wang G, Sang W, Xu M, Li W, et al. Phototheranostic metal-phenolic networks with antiexosomal PD-L1 enhanced ferroptosis for synergistic immunotherapy. J Am Chem Soc. 2022;144(2):787–97.
Ma X, Xiao L, Liu L, Ye L, Su P, Bi E, et al. CD36-mediated ferroptosis dampens intratumoral CD8+ T cell effector operate and impairs their antitumor skill. Cell Metab. 2021;33(5):1001–12.
Zha S, Liu H, Li H, Li H, Wong Ok-L, All AH. Functionalized nanomaterials able to crossing the blood–mind barrier. ACS Nano. 2024;18(3):1820–45.
Fang X, Ardehali H, Min J, Wang F. The molecular and metabolic panorama of iron and ferroptosis in heart problems. Nat Rev Cardiol. 2023;20(1):7–23.
Fang X, Wang H, Han D, Xie E, Yang X, Wei J, et al. Ferroptosis as a goal for defense towards cardiomyopathy. Proc Natl Acad Sci USA. 2019;116(7):2672–80.
Kellum JA, Romagnani P, Ashuntantang G, Ronco C, Zarbock A, Anders H-J. Acute kidney harm. Nat Rev Dis Prim. 2021;7(1):52.
Friedmann Angeli JP, Schneider M, Proneth B, Tyurina YY, Tyurin VA, Hammond VJ, et al. Inactivation of the ferroptosis regulator Gpx4 triggers acute renal failure in mice. Nat Cell Biol. 2014;16(12):1180–91.
Chen J, Ou Z, Gao T, Yang Y, Shu A, Xu H, et al. Ginkgolide B alleviates oxidative stress and ferroptosis by inhibiting GPX4 ubiquitination to enhance diabetic nephropathy. Biomed Pharmacother. 2022;156: 113953.
Yu M, Li H, Wang B, Wu Z, Wu S, Jiang G, et al. Baicalein ameliorates polymyxin B-induced acute renal harm by inhibiting ferroptosis by way of regulation of SIRT1/p53 acetylation. Chem Biol Work together. 2023;382: 110607.
Agur Z, Elishmereni M, Kheifetz Y. Personalizing oncology remedies by predicting drug efficacy, side-effects, and improved remedy: arithmetic, statistics, and their integration. Wiley Interdiscip Rev Syst Biol Med. 2014;6(3):239–53.
Ho D, Quake SR, McCabe ERB, Chng WJ, Chow EK, Ding X, et al. Enabling applied sciences for customized and precision medication. Tendencies Biotechnol. 2020;38(5):497–518.
Yan Q, Zheng W, Jiang Y, Zhou P, Lai Y, Liu C, et al. Transcriptomic reveals the ferroptosis options of host response in a mouse mannequin of Zika virus an infection. J Med Virol. 2023;95(1): e28386.
Cai Y, Chen X, Si J, Mou X, Dong X. All-in-one nanomedicine: multifunctional single-component nanoparticles for most cancers theranostics. Small. 2021;17(52): e2103072.
Cai Y, Wei Z, Tune C, Tang C, Han W, Dong X. Optical nano-agents within the second near-infrared window for biomedical purposes. Chem Soc Rev. 2019;48(1):22–37.
Li W, Li C, Zhou T, Liu X, Liu X, Li X, Chen D. Position of exosomal proteins in most cancers prognosis. Mol Most cancers. 2017;16(1):145.
Chen M, Liu D, Liu F, Wu Y, Peng X, Tune F. Latest advances of redox-responsive nanoplatforms for tumor theranostics. J Management Launch. 2021;332:269–84.
Ma X, Zhang M-J, Wang J, Zhang T, Xue P, Kang Y, et al. Rising biomaterials imaging antitumor immune response. Adv Mater. 2022;34(42): e2204034.