Sunday, December 15, 2024
HomeArtificial IntelligenceNeural type switch with keen execution and Keras

Neural type switch with keen execution and Keras


How would your summer season vacation’s photographs look had Edvard Munch painted them? (Maybe it’s higher to not know).
Let’s take a extra comforting instance: How would a pleasant, summarly river panorama look if painted by Katsushika Hokusai?

Model switch on photographs is just not new, however acquired a lift when Gatys, Ecker, and Bethge(Gatys, Ecker, and Bethge 2015) confirmed the right way to efficiently do it with deep studying.
The primary concept is easy: Create a hybrid that may be a tradeoff between the content material picture we need to manipulate, and a type picture we need to imitate, by optimizing for maximal resemblance to each on the identical time.

When you’ve learn the chapter on neural type switch from Deep Studying with R, you might acknowledge a number of the code snippets that observe.
Nevertheless, there is a crucial distinction: This submit makes use of TensorFlow Keen Execution, permitting for an crucial means of coding that makes it straightforward to map ideas to code.
Identical to earlier posts on keen execution on this weblog, it is a port of a Google Colaboratory pocket book that performs the identical process in Python.

As typical, please ensure you have the required bundle variations put in. And no want to repeat the snippets – you’ll discover the entire code among the many Keras examples.

Stipulations

The code on this submit is dependent upon the newest variations of a number of of the TensorFlow R packages. You may set up these packages as follows:

c(128, 128, 3)

content_path <- "isar.jpg"

content_image <-  image_load(content_path, target_size = img_shape[1:2])
content_image %>% 
  image_to_array() %>%
  `/`(., 255) %>%
  as.raster() %>%
  plot()

And right here’s the type mannequin, Hokusai’s The Nice Wave off Kanagawa, which you’ll obtain from Wikimedia Commons:

style_path <- "The_Great_Wave_off_Kanagawa.jpg"

style_image <-  image_load(content_path, target_size = img_shape[1:2])
style_image %>% 
  image_to_array() %>%
  `/`(., 255) %>%
  as.raster() %>%
  plot()

We create a wrapper that masses and preprocesses the enter photographs for us.
As we shall be working with VGG19, a community that has been skilled on ImageNet, we have to remodel our enter photographs in the identical means that was used coaching it. Later, we’ll apply the inverse transformation to our mixture picture earlier than displaying it.

load_and_preprocess_image <- operate(path) {
  img <- image_load(path, target_size = img_shape[1:2]) %>%
    image_to_array() %>%
    k_expand_dims(axis = 1) %>%
    imagenet_preprocess_input()
}

deprocess_image <- operate(x) {
  x <- x[1, , ,]
  # Take away zero-center by imply pixel
  x[, , 1] <- x[, , 1] + 103.939
  x[, , 2] <- x[, , 2] + 116.779
  x[, , 3] <- x[, , 3] + 123.68
  # 'BGR'->'RGB'
  x <- x[, , c(3, 2, 1)]
  x[x > 255] <- 255
  x[x < 0] <- 0
  x[] <- as.integer(x) / 255
  x
}

Setting the scene

We’re going to use a neural community, however we received’t be coaching it. Neural type switch is a bit unusual in that we don’t optimize the community’s weights, however again propagate the loss to the enter layer (the picture), with a purpose to transfer it within the desired path.

We shall be all in favour of two sorts of outputs from the community, akin to our two objectives.
Firstly, we need to maintain the mixture picture much like the content material picture, on a excessive degree. In a convnet, higher layers map to extra holistic ideas, so we’re choosing a layer excessive up within the graph to match outputs from the supply and the mixture.

Secondly, the generated picture ought to “appear like” the type picture. Model corresponds to decrease degree options like texture, shapes, strokes… So to match the mixture towards the type instance, we select a set of decrease degree conv blocks for comparability and mixture the outcomes.

content_layers <- c("block5_conv2")
style_layers <- c("block1_conv1",
                 "block2_conv1",
                 "block3_conv1",
                 "block4_conv1",
                 "block5_conv1")

num_content_layers <- size(content_layers)
num_style_layers <- size(style_layers)

get_model <- operate() {
  vgg <- application_vgg19(include_top = FALSE, weights = "imagenet")
  vgg$trainable <- FALSE
  style_outputs <- map(style_layers, operate(layer) vgg$get_layer(layer)$output)
  content_outputs <- map(content_layers, operate(layer) vgg$get_layer(layer)$output)
  model_outputs <- c(style_outputs, content_outputs)
  keras_model(vgg$enter, model_outputs)
}

Losses

When optimizing the enter picture, we’ll contemplate three sorts of losses. Firstly, the content material loss: How totally different is the mixture picture from the supply? Right here, we’re utilizing the sum of the squared errors for comparability.

content_loss <- operate(content_image, goal) {
  k_sum(k_square(goal - content_image))
}

Our second concern is having the types match as carefully as attainable. Model is usually operationalized because the Gram matrix of flattened function maps in a layer. We thus assume that type is said to how maps in a layer correlate with different.

We due to this fact compute the Gram matrices of the layers we’re all in favour of (outlined above), for the supply picture in addition to the optimization candidate, and examine them, once more utilizing the sum of squared errors.

gram_matrix <- operate(x) {
  options <- k_batch_flatten(k_permute_dimensions(x, c(3, 1, 2)))
  gram <- k_dot(options, k_transpose(options))
  gram
}

style_loss <- operate(gram_target, mixture) {
  gram_comb <- gram_matrix(mixture)
  k_sum(k_square(gram_target - gram_comb)) /
    (4 * (img_shape[3] ^ 2) * (img_shape[1] * img_shape[2]) ^ 2)
}

Thirdly, we don’t need the mixture picture to look overly pixelated, thus we’re including in a regularization part, the overall variation within the picture:

total_variation_loss <- operate(picture) {
  y_ij  <- picture[1:(img_shape[1] - 1L), 1:(img_shape[2] - 1L),]
  y_i1j <- picture[2:(img_shape[1]), 1:(img_shape[2] - 1L),]
  y_ij1 <- picture[1:(img_shape[1] - 1L), 2:(img_shape[2]),]
  a <- k_square(y_ij - y_i1j)
  b <- k_square(y_ij - y_ij1)
  k_sum(k_pow(a + b, 1.25))
}

The difficult factor is the right way to mix these losses. We’ve reached acceptable outcomes with the next weightings, however be at liberty to mess around as you see match:

content_weight <- 100
style_weight <- 0.8
total_variation_weight <- 0.01

Get mannequin outputs for the content material and elegance photographs

We want the mannequin’s output for the content material and elegance photographs, however right here it suffices to do that simply as soon as.
We concatenate each photographs alongside the batch dimension, cross that enter to the mannequin, and get again an inventory of outputs, the place each ingredient of the record is a 4-d tensor. For the type picture, we’re within the type outputs at batch place 1, whereas for the content material picture, we want the content material output at batch place 2.

Within the under feedback, please be aware that the sizes of dimensions 2 and three will differ for those who’re loading photographs at a special measurement.

get_feature_representations <-
  operate(mannequin, content_path, style_path) {
    
    # dim == (1, 128, 128, 3)
    style_image <-
      load_and_process_image(style_path) %>% k_cast("float32")
    # dim == (1, 128, 128, 3)
    content_image <-
      load_and_process_image(content_path) %>% k_cast("float32")
    # dim == (2, 128, 128, 3)
    stack_images <- k_concatenate(record(style_image, content_image), axis = 1)
    
    # size(model_outputs) == 6
    # dim(model_outputs[[1]]) = (2, 128, 128, 64)
    # dim(model_outputs[[6]]) = (2, 8, 8, 512)
    model_outputs <- mannequin(stack_images)
    
    style_features <- 
      model_outputs[1:num_style_layers] %>%
      map(operate(batch) batch[1, , , ])
    content_features <- 
      model_outputs[(num_style_layers + 1):(num_style_layers + num_content_layers)] %>%
      map(operate(batch) batch[2, , , ])
    
    record(style_features, content_features)
  }

Computing the losses

On each iteration, we have to cross the mixture picture by way of the mannequin, acquire the type and content material outputs, and compute the losses. Once more, the code is extensively commented with tensor sizes for simple verification, however please remember that the precise numbers presuppose you’re working with 128×128 photographs.

compute_loss <-
  operate(mannequin, loss_weights, init_image, gram_style_features, content_features) {
    
    c(style_weight, content_weight) %<-% loss_weights
    model_outputs <- mannequin(init_image)
    style_output_features <- model_outputs[1:num_style_layers]
    content_output_features <-
      model_outputs[(num_style_layers + 1):(num_style_layers + num_content_layers)]
    
    # type loss
    weight_per_style_layer <- 1 / num_style_layers
    style_score <- 0
    # dim(style_zip[[5]][[1]]) == (512, 512)
    style_zip <- transpose(record(gram_style_features, style_output_features))
    for (l in 1:size(style_zip)) {
      # for l == 1:
      # dim(target_style) == (64, 64)
      # dim(comb_style) == (1, 128, 128, 64)
      c(target_style, comb_style) %<-% style_zip[[l]]
      style_score <- style_score + weight_per_style_layer * 
        style_loss(target_style, comb_style[1, , , ])
    }
    
    # content material loss
    weight_per_content_layer <- 1 / num_content_layers
    content_score <- 0
    content_zip <- transpose(record(content_features, content_output_features))
    for (l in 1:size(content_zip)) {
      # dim(comb_content) ==  (1, 8, 8, 512)
      # dim(target_content) == (8, 8, 512)
      c(target_content, comb_content) %<-% content_zip[[l]]
      content_score <- content_score + weight_per_content_layer *
        content_loss(comb_content[1, , , ], target_content)
    }
    
    # whole variation loss
    variation_loss <- total_variation_loss(init_image[1, , ,])
    
    style_score <- style_score * style_weight
    content_score <- content_score * content_weight
    variation_score <- variation_loss * total_variation_weight
    
    loss <- style_score + content_score + variation_score
    record(loss, style_score, content_score, variation_score)
  }

Computing the gradients

As quickly as now we have the losses, acquiring the gradients of the general loss with respect to the enter picture is only a matter of calling tape$gradient on the GradientTape. Observe that the nested name to compute_loss, and thus the decision of the mannequin on our mixture picture, occurs contained in the GradientTape context.

compute_grads <- 
  operate(mannequin, loss_weights, init_image, gram_style_features, content_features) {
    with(tf$GradientTape() %as% tape, {
      scores <-
        compute_loss(mannequin,
                     loss_weights,
                     init_image,
                     gram_style_features,
                     content_features)
    })
    total_loss <- scores[[1]]
    record(tape$gradient(total_loss, init_image), scores)
  }

Coaching part

Now it’s time to coach! Whereas the pure continuation of this sentence would have been “… the mannequin,” the mannequin we’re coaching right here is just not VGG19 (that one we’re simply utilizing as a instrument), however a minimal setup of simply:

  • a Variable that holds our to-be-optimized picture
  • the loss capabilities we outlined above
  • an optimizer that may apply the calculated gradients to the picture variable (tf$practice$AdamOptimizer)

Beneath, we get the type options (of the type picture) and the content material function (of the content material picture) simply as soon as, then iterate over the optimization course of, saving the output each 100 iterations.

In distinction to the unique article and the Deep Studying with R e book, however following the Google pocket book as an alternative, we’re not utilizing L-BFGS for optimization, however Adam, as our purpose right here is to supply a concise introduction to keen execution.
Nevertheless, you could possibly plug in one other optimization technique for those who wished, changing
optimizer$apply_gradients(record(tuple(grads, init_image)))
by an algorithm of your selection (and naturally, assigning the results of the optimization to the Variable holding the picture).

run_style_transfer <- operate(content_path, style_path) {
  mannequin <- get_model()
  stroll(mannequin$layers, operate(layer) layer$trainable = FALSE)
  
  c(style_features, content_features) %<-% 
    get_feature_representations(mannequin, content_path, style_path)
  # dim(gram_style_features[[1]]) == (64, 64)
  gram_style_features <- map(style_features, operate(function) gram_matrix(function))
  
  init_image <- load_and_process_image(content_path)
  init_image <- tf$contrib$keen$Variable(init_image, dtype = "float32")
  
  optimizer <- tf$practice$AdamOptimizer(learning_rate = 1,
                                      beta1 = 0.99,
                                      epsilon = 1e-1)
  
  c(best_loss, best_image) %<-% record(Inf, NULL)
  loss_weights <- record(style_weight, content_weight)
  
  start_time <- Sys.time()
  global_start <- Sys.time()
  
  norm_means <- c(103.939, 116.779, 123.68)
  min_vals <- -norm_means
  max_vals <- 255 - norm_means
  
  for (i in seq_len(num_iterations)) {
    # dim(grads) == (1, 128, 128, 3)
    c(grads, all_losses) %<-% compute_grads(mannequin,
                                            loss_weights,
                                            init_image,
                                            gram_style_features,
                                            content_features)
    c(loss, style_score, content_score, variation_score) %<-% all_losses
    optimizer$apply_gradients(record(tuple(grads, init_image)))
    clipped <- tf$clip_by_value(init_image, min_vals, max_vals)
    init_image$assign(clipped)
    
    end_time <- Sys.time()
    
    if (k_cast_to_floatx(loss) < best_loss) {
      best_loss <- k_cast_to_floatx(loss)
      best_image <- init_image
    }
    
    if (i %% 50 == 0) {
      glue("Iteration: {i}") %>% print()
      glue(
        "Complete loss: {k_cast_to_floatx(loss)},
        type loss: {k_cast_to_floatx(style_score)},
        content material loss: {k_cast_to_floatx(content_score)},
        whole variation loss: {k_cast_to_floatx(variation_score)},
        time for 1 iteration: {(Sys.time() - start_time) %>% spherical(2)}"
      ) %>% print()
      
      if (i %% 100 == 0) {
        png(paste0("style_epoch_", i, ".png"))
        plot_image <- best_image$numpy()
        plot_image <- deprocess_image(plot_image)
        plot(as.raster(plot_image), foremost = glue("Iteration {i}"))
        dev.off()
      }
    }
  }
  
  glue("Complete time: {Sys.time() - global_start} seconds") %>% print()
  record(best_image, best_loss)
}

Able to run

Now, we’re prepared to begin the method:

c(best_image, best_loss) %<-% run_style_transfer(content_path, style_path)

In our case, outcomes didn’t change a lot after ~ iteration 1000, and that is how our river panorama was wanting:

… positively extra inviting than had it been painted by Edvard Munch!

Conclusion

With neural type switch, some fiddling round could also be wanted till you get the consequence you need. However as our instance reveals, this doesn’t imply the code needs to be difficult. Moreover to being straightforward to know, keen execution additionally enables you to add debugging output, and step by way of the code line-by-line to verify on tensor shapes.
Till subsequent time in our keen execution sequence!

Gatys, Leon A., Alexander S. Ecker, and Matthias Bethge. 2015. “A Neural Algorithm of Inventive Model.” CoRR abs/1508.06576. http://arxiv.org/abs/1508.06576.

RELATED ARTICLES

LEAVE A REPLY

Please enter your comment!
Please enter your name here

Most Popular

Recent Comments