Sunday, December 15, 2024
HomeNanotechnologyPhotovoltaic nanocells for high-performance large-scale-integrated natural phototransistors

Photovoltaic nanocells for high-performance large-scale-integrated natural phototransistors


  • Zhou, Z. et al. Bioinspired in-sensor visible adaptation for correct notion. Nat. Electron. 5, 84–91 (2022).

    Article 

    Google Scholar
     

  • Jansen-van Vuuren, R. D., Armin, A., Pandey, A. Okay., Burn, P. L. & Meredith, P. Natural photodiodes: the way forward for full shade detection and picture sensing. Adv. Mater. 28, 4766–4802 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Reisman, A. et al. System, circuit and expertise scaling to micron and submicron dimensions. Proc. FEE 71, 550–565 (1983).


    Google Scholar
     

  • Zheng, Y. Q. et al. Monolithic optical microlithography of high-density elastic circuits. Science 373, 88–94 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zheng, Y. et al. A molecular design method in the direction of elastic and multifunctional polymer electronics. Nat. Commun. 12, 5701 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kaushik, S., Tadao, N. & Daniel, M. M. Terahertz built-in digital and hybrid digital–photonic programs. Nat. Electron. 1, 622–635 (2018).

    Article 

    Google Scholar
     

  • Kim, M. J. et al. Common three-dimensional crosslinker for all-photopatterned electronics. Nat. Commun. 11, 1520 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Baek, S. W. et al. Environment friendly hybrid colloidal quantum dot/natural photo voltaic cells mediated by near-infrared sensitizing small molecules. Nat. Vitality 4, 969–976 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Yao, Y. et al. Supramolecular engineering of cost switch in vast bandgap natural semiconductors with enhanced visible-to-NIR photoresponse. Nat. Commun. 12, 3667 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yang, B. et al. Bioinspired multifunctional natural transistors primarily based on pure chlorophyll/natural semiconductors. Adv. Mater. 32, 2001227 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Yang, B. et al. Excessive efficiency ternary natural phototransistors with photoresponse as much as 2600 nm at room temperature. Adv. Funct. Mater. 31, 2103787 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Yokota, T. et al. A conformable imager for biometric authentication and very important signal measurement. Nat. Electron. 3, 113–121 (2020).

    Article 

    Google Scholar
     

  • Ciocca, M. et al. Color-sensitive conjugated polymer inkjet-printed pixelated synthetic retina mannequin studied through a bio-hybrid photovoltaic system. Sci. Rep. 10, 21457 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Konstantatos, G. Present standing and technological prospect of photodetectors primarily based on two-dimensional supplies. Nat. Commun. 9, 5266 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Voznyy, Okay. O. et al. Engineering cost transport by heterostructuring solution-processed semiconductors. Nat. Rev. Mater. 2, 17026 (2017).

    Article 
    CAS 

    Google Scholar
     

  • García de Arquer, F. et al. Resolution-processed semiconductors for next-generation photodetectors. Nat. Rev. Mater. 2, 16100 (2017).

    Article 

    Google Scholar
     

  • Lin, Y. H. et al. Deciphering photocarrier dynamics for tuneable high-performance perovskite–natural semiconductor heterojunction phototransistors. Nat. Commun. 10, 4475 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liang, S. et al. Tailoring cost separation at meticulously engineered conjugated polymer/perovskite quantum dot interface for photocatalyzing atom switch radical polymerization. J. Am. Chem. Soc. 144, 12901–12914 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chiang, W. Y. & Kuo, H. T. Preparation of trimethylsilyl group containing copolymer for negative-type photoresists that allow stripped by an alkaline resolution. Eur. Polym. J. 38, 1761–1768 (2002).

    Article 
    CAS 

    Google Scholar
     

  • Grunert, U. & Martin, P. R. Cell sorts and cell circuits in human and non-human primate retina. Prog. Retin. Eye Res. 78, 100844 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Liu, S. H. et al. Direct patterning of organic-thin-film-transistor arrays through a ‘dry-taping’ method. Adv. Mater. 21, 1266–1270 (2009).

    Article 

    Google Scholar
     

  • Fang, Y. J., Armin, A., Meredith, P. & Huang, J. S. Correct characterization of next-generation thin-film photodetectors. Nat. Photon. 13, 1–4 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Music, J. Okay. et al. Stretchable colour-sensitive quantum dot nanocomposites for shape-tunable multiplexed phototransistor arrays. Nat. Nanotechnol. 17, 849–856 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chen, Okay. et al. Resolution-processed CsPbBr3 quantum dots/natural semiconductor planar heterojunctions for high-performance photodetectors. Adv. Sci. 9, 2105856 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Chen, Y. et al. Excessive-performance inorganic perovskite quantum dot–natural semiconductor hybrid phototransistors. Adv. Mater. 29, 1704062 (2017).

    Article 

    Google Scholar
     

  • Wang, X. et al. Spectrum reconstruction with filter-free photodetectors primarily based on graded-band-gap perovskite quantum dot heterojunctions. ACS Appl. Mater. Interfaces 14, 14455–14465 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chen, Z. J. et al. Boosting photocatalytic CO2 discount on CsPbBr3 perovskite nanocrystals by immobilizing metallic complexes. Chem. Mater. 32, 1517–1525 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Png, R. Q. et al. Excessive-performance polymer semiconducting heterostructure gadgets by nitrene-mediated photocrosslinking of alkyl facet chains. Nat. Mater. 9, 152–158 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang, Y. et al. Ultrastable, extremely luminescent natural–inorganic perovskite–polymer composite movies. Adv. Mater. 28, 10710–10717 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gumyusenge, A. et al. Semiconducting polymer blends that exhibit secure cost transport at excessive temperatures. Science 362, 1131–1134 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gu, L. L. et al. A biomimetic eye with a hemispherical perovskite nanowire array retina. Nature 581, 278–282 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kim, J. et al. A skin-like two-dimensionally pixelized full-color quantum dot photodetector. Sci. Adv. 5, eaax8801 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang, Z. H. et al. All-in-one two-dimensional retinomorphic {hardware} system for movement detection and recognition. Nat. Nanotechnol. 17, 27–32 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Abbott, L. F. & Regehr, W. G. Synaptic computation. Nature 431, 796–803 (2004).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Roy, Okay., Jaiswal, A. & Panda, P. In the direction of spike-based machine intelligence with neuromorphic computing. Nature 575, 607–617 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lee, Y. et al. Stretchable natural optoelectronic sensorimotor synapse. Sci. Adv. 4, eaat7387 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang, Y. et al. Photonic synapses primarily based on inorganic perovskite quantum dots for neuromorphic computing. Adv. Mater. 30, 1802883 (2018).

    Article 

    Google Scholar
     

  • Xu, F. et al. Intrinsically stretchable photonic synaptic transistors for retina-like visible picture programs. J. Mater. Chem. C 10, 10586–10594 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Kim, Y. et al. A hemispherical picture sensor array fabricated with natural photomemory transistors. Adv. Mater. 35, 2203541 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Shi, J. L. et al. A totally solution-printed photosynaptic transistor array with ultralow power consumption for artificial-vision neural networks. Adv. Mater. 34, 2200380 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Wang, Okay. et al. Gentle-stimulated synaptic transistors fabricated by a facile resolution course of primarily based on inorganic perovskite quantum dots and natural semiconductors. Small 15, 1900010 (2019).

    Article 

    Google Scholar
     

  • He, Z. H. et al. An natural transistor with gentle intensity-dependent energetic photoadaptation. Nat. Electron. 4, 522–529 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Schneider, M. L. et al. Ultralow energy synthetic synapses utilizing nanotextured magnetic Josephson junctions. Sci. Adv. 4, e1701329 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lee, M. et al. Mind-inspired photonic neuromorphic gadgets utilizing photodynamic amorphous oxide semiconductors and their persistent photoconductivity. Adv. Mater. 29, 1700951 (2017).

    Article 

    Google Scholar
     

  • Michel, J., Liu, J. & Kimerling, L. Excessive-performance Ge-on-Si photodetectors. Nat. Photon. 4, 527–534 (2010).

    Article 
    CAS 

    Google Scholar
     

  • Swarnkar, A. et al. Quantum dot-induced part stabilization of α-CsPbI3 perovskite for high-efficiency photovoltaics. Science 354, 92–95 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Search engine optimization, S. et al. Synthetic optic–neural synapse for coloured and color-mixed sample recognition. Nat. Commun. 9, 5106 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lv, Z. et al. Mimicking neuroplasticity in a hybrid biopolymer transistor by twin modes modulation. Adv. Funct. Mater. 29, 1902374 (2019).

    Article 

    Google Scholar
     

  • Zhang, S. Knowledge and code for Article ‘Excessive-performance large-scale-integration natural phototransistors primarily based on photovoltaic nanocells’. Zenodo https://doi.org/10.5281/zenodo.11224306 (2024).

  • RELATED ARTICLES

    LEAVE A REPLY

    Please enter your comment!
    Please enter your name here

    Most Popular

    Recent Comments