Sunday, December 15, 2024
HomeNanotechnologyRegioselective epitaxial progress of metallic heterostructures

Regioselective epitaxial progress of metallic heterostructures


  • Mitchell, S. et al. Nanoscale engineering of catalytic supplies for sustainable applied sciences. Nat. Nanotechnol. 16, 129–139 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Guan, Q. et al. Bimetallic monolayer catalyst breaks the exercise–selectivity commerce−off on steel particle measurement for environment friendly chemoselective hydrogenations. Nat. Catal. 4, 840–849 (2021).

    Article 
    CAS 

    Google Scholar
     

  • van der Hoeven, J. E. S. et al. Unlocking synergy in bimetallic catalysts by coreshell design. Nat. Mater. 20, 1216–1220 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • He, T. et al. Mastering the floor pressure of platinum catalysts for environment friendly electrocatalysis. Nature 598, 76–81 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chang, J. et al. Enhancing Pd–N–C gasoline cell electrocatalysts by means of fluorination-driven rearrangements of native coordination setting. Nat. Power 6, 1144–1153 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Oyedele, A. D. et al. PdSe2: pentagonal two-dimensional layers with excessive air stability for electronics. J. Am. Chem. Soc. 139, 14090–14097 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li, Y. et al. Anomalous resistive switching in memristors based mostly on two-dimensional palladium diselenide utilizing heterophase grain boundaries. Nat. Electron. 4, 348–356 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Sancho-Albero, M. et al. Most cancers-derived exosomes loaded with ultrathin palladium nanosheets for focused bioorthogonal catalysis. Nat. Catal. 2, 864–872 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sebastian, V. et al. Nondestructive manufacturing of exosomes loaded with ultrathin palladium nanosheets for focused bio-orthogonal catalysis. Nat. Protoc. 16, 131–163 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chen, Z. et al. Bioorthogonal catalytic patch. Nat. Nanotechnol. 16, 933–941 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Novoselov, Okay. S., Mishchenko, A., Carvalho, A. & Castro Neto, A. H. 2D supplies and van der Waals heterostructures. Science 353, aac9439 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lu, Q. et al. Crystal partbased mostly epitaxial progress of hybrid noble steel nanostructures on 4H/fcc Au nanowires. Nat. Chem. 10, 456–461 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhai, L. et al. Epitaxial progress of extremely symmetrical branched noble metal-semiconductor heterostructures with environment friendly plasmon-induced hot-electron switch. Nat. Commun. 14, 2538 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mistry, H., Varela, A. S., Kühl, S., Strasser, P. & Cuenya, B. R. Nanostructured electrocatalysts with tunable exercise and selectivity. Nat. Rev. Mater. 1, 16009 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Seh, Z. W. et al. Combining idea and experiment in electrocatalysis: insights into supplies design. Science 355, eaad4998 (2017).

    Article 
    PubMed 

    Google Scholar
     

  • Yang, Y. et al. Steel floor and interface power electrocatalysis: fundamentals, efficiency engineering, and alternatives. Chem 4, 2054–2083 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Luo, M. & Guo, S. Pressure-controlled electrocatalysis on multimetallic nanomaterials. Nat. Rev. Mater. 2, 17059 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Xu, Q. et al. Atomic heterointerface engineering overcomes the exercise limitation of electrocatalysts and guarantees highly-efficient alkaline water splitting. Power Environ. Sci. 14, 5228–5259 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Park, J. et al. Flattening bent Janus nanodiscs expands lattice parameters. Chem 9, 948–962 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Bu, L. et al. Biaxially strained PtPb/Pt core/shell nanoplate boosts oxygen discount catalysis. Science 354, 1410–1414 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li, M. et al. Ultrafine jagged platinum nanowires allow ultrahigh mass exercise for the oxygen discount response. Science 354, 1414–1419 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhao, M. et al. Selective epitaxial progress of oriented hierarchical steel–natural framework heterostructures. J. Am. Chem. Soc. 142, 8953–8961 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Huang, L. et al. Regioselective deposition of metals on seeds inside a polymer matrix. J. Am. Chem. Soc. 144, 4792–4798 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhuang, T. et al. Regioselective magnetization in semiconducting nanorods. Nat. Nanotechnol. 15, 192–197 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Steimle, B. C. et al. Rational development of a scalable heterostructured nanorod megalibrary. Science 367, 418–424 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Oh, M. H. et al. Design and synthesis of multigrain nanocrystals by way of geometric misfit pressure. Nature 577, 359–363 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chen, L. et al. Improved ethanol electrooxidation efficiency by shortening Pd–Ni lively website distance in Pd–Ni–P nanocatalysts. Nat. Commun. 8, 14136 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang, Y. et al. Atomically remoted Rh websites inside extremely branched Rh2Sb nanostructures improve bifunctional hydrogen electrocatalysis. Adv. Mater. 33, e2105049 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Zhou, M. et al. Enchancment of oxygen discount efficiency in alkaline media by tuning part construction of Pd–Bi nanocatalysts. J. Am. Chem. Soc. 143, 15891–15897 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lide, D. R. et al. CRC Handbook of Chemistry and Physics ninetieth edn, 9–68 (CRC, 2010).

  • Wang, C. et al. Side-controlled synthesis of platinum-group-metal quaternary alloys: the case of nanocubes and 100 sides. J. Am. Chem. Soc. 145, 2553–2560 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Qiu, X. et al. Twin proliferation and prolongation underneath kinetic management: Pd–Au Janus icosahedra versus Pd@Au core–shell starfishes. J. Am. Chem. Soc. 145, 13400–13410 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Harada, M. & Katagiri, E. Mechanism of silver particle formation throughout photoreduction utilizing in situ time-resolved SAXS evaluation. Langmuir 26, 17896–17905 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li, J. & Deepak, F. L. In situ kinetic observations on crystal nucleation and progress. Chem. Rev. 122, 16911–16982 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lu, N., Wang, J., Xie, S., Xia, Y. & Kim, M. J. Enhanced form stability of Pd–Rh core–body nanocubes at elevated temperature: in situ heating transmission electron microscopy. Chem. Commun. 49, 11806–11808 (2013).

    Article 
    CAS 

    Google Scholar
     

  • Gilroy, Okay. D. et al. Bimetallic nanocrystals: syntheses, properties, and purposes. Chem. Rev. 116, 10414–10472 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kwon, S. G. et al. Heterogeneous nucleation and form transformation of multicomponent metallic nanostructures. Nat. Mater. 14, 215–223 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lin, M. et al. One-pot heterointerfacial metamorphosis for synthesis and management of extensively various heterostructured nanoparticles. J. Am. Chem. Soc. 143, 3383–3392 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • RELATED ARTICLES

    LEAVE A REPLY

    Please enter your comment!
    Please enter your name here

    Most Popular

    Recent Comments