Kononchuk, R., Cai, J., Ellis, F., Thevamaran, R. & Kottos, T. Distinctive-point-based accelerometers with enhanced signal-to-noise ratio. Nature 607, 697–702 (2022).
Zhou, F. et al. Broadband thermomechanically restricted sensing with an optomechanical accelerometer. Optica 8, 350 (2021).
Liu, Y., Miao, H., Aksyuk, V. & Srinivasan, Okay. Broad cantilever stiffness vary cavity optomechanical sensors for atomic drive microscopy. Decide. Specific 20, 18268 (2012).
Xue, C. et al. Precision measurement of the Newtonian gravitational fixed. Natl Sci. Rev. 7, 1803–1817 (2020).
Forstner, S. et al. Ultrasensitive optomechanical magnetometry. Adv. Mater. 26, 6348–6353 (2014).
Jiang, M., Su, H., Garcon, A., Peng, X. & Budker, D. Seek for axion-like darkish matter with spin-based amplifiers. Nat. Phys. 17, 1402–1407 (2021).
Rossi, M., Mason, D., Chen, J., Tsaturyan, Y. & Schliesser, A. Measurement-based quantum management of mechanical movement. Nature 563, 53–58 (2018).
Wei, X., Sheng, J., Wu, Y., Liu, W. & Wu, H. Twin-beam-enhanced displacement measurement of a membrane in a cavity. Appl. Phys. Lett. 115, 251105 (2019).
Abbott, B. P., Abbott, R., Abbott, T. D. & Abernathy GW151226: remark of gravitational waves from a 22-solar-mass binary black gap coalescence. Phys. Rev. Lett. 116, 241103 (2016).
Møller, C. B. et al. Quantum back-action-evading measurement of movement in a detrimental mass reference body. Nature 547, 191–195 (2017).
Shomroni, I., Qiu, L., Malz, D., Nunnenkamp, A. & Kippenberg, T. J. Optical backaction-evading measurement of a mechanical oscillator. Nat. Commun. 10, 2086 (2019).
Guo, Y. et al. Enhancing squeezing and nonclassicality of sunshine in atom-optomechanical techniques. Ann. Phys. 530, 1800138 (2018).
Tang, L. et al. Quantum squeezing induced optical nonreciprocity. Phys. Rev. Lett. 128, 083604 (2022).
Wan, L.-L. & Lü, X.-Y. Quantum-squeezing-induced point-gap topology and pores and skin impact. Phys. Rev. Lett. 130, 203605 (2023).
Kampel, N. S. et al. Enhancing broadband displacement detection with quantum correlations. Phys. Rev. X 7, 021008 (2017).
Yuan, G. H. & Zheludev, X. I. Detecting nanometric displacements with optical ruler metrology. Science 775, 771–775 (2019).
Xia, Okay. & Evers, J. Floor state cooling of a nanomechanical resonator within the nonresolved regime by way of quantum interference. Phys. Rev. Lett. 103, 227203 (2009).
Li, A. et al. Distinctive factors and non-Hermitian photonics on the nanoscale. Nat. Nanotechnol. 18, 706–720 (2023).
Ashida, Y., Gong, Z. & Ueda, M. Non-Hermitian physics. Adv. Phys. 69, 249–435 (2020).
Özdemir, Ş. Okay., Rotter, S., Nori, F. & Yang, L. Parity–time symmetry and distinctive factors in photonics. Nat. Mater. 18, 783–798 (2019).
Miri, M.-A. & Alù, A. Distinctive factors in optics and photonics. Science 363, eaar7709 (2019).
Konotop, V. V., Yang, J. & Zezyulin, D. A. Nonlinear waves in PT-symmetric techniques. Rev. Mod. Phys. 88, 035002 (2016).
El-Ganainy, R. et al. Non-Hermitian physics and PT symmetry. Nat. Phys. 14, 11–19 (2018).
Guo, A. et al. Remark of PT-symmetry breaking in advanced optical potentials. Phys. Rev. Lett. 103, 093902 (2009).
Peng, B. et al. Loss-induced suppression and revival of lasing. Science 346, 328–332 (2014).
Chong, Y. D., Ge, L. & Stone, A. D. PT-symmetry breaking and laser-absorber modes in optical scattering techniques. Phys. Rev. Lett. 106, 093902 (2011).
Wong, Z. J. et al. Lasing and anti-lasing in a single cavity. Nat. Photonics 10, 796–801 (2016).
Wang, C., Sweeney, W. R., Stone, A. D. & Yang, L. Coherent good absorption at an distinctive level. Science 373, 1261–1265 (2021).
Chen, B., Guo, Y. & Shen, H. Spontaneous section locking of mechanical multimodes in anti-parity–time optomechanics. Decide. Specific 28, 28762 (2020).
Jing, H. et al. PT-symmetric phonon laser. Phys. Rev. Lett. 113, 053604 (2014).
Huang, X., Lu, C., Liang, C., Tao, H. & Liu, Y.-C. Loss-induced nonreciprocity. Gentle Sci. Appl. 10, 30 (2021).
Budich, J. C. & Bergholtz, E. J. Non-Hermitian topological sensors. Phys. Rev. Lett. 125, 180403 (2020).
Zhao, H. et al. Non-Hermitian topological gentle steering. Science 365, 1163–1166 (2019).
Wiersig, J. Enhancing the sensitivity of frequency and vitality splitting detection by utilizing distinctive factors: utility to microcavity sensors for single-particle detection. Phys. Rev. Lett. 112, 203901 (2014).
Wiersig, J. Overview of outstanding point-based sensors. Photonics Res. 8, 1457 (2020).
Chen, W., Kaya Özdemir, Ş., Zhao, G., Wiersig, J. & Yang, L. Distinctive factors improve sensing in an optical microcavity. Nature 548, 192–196 (2017).
Sunada, S. Massive Sagnac frequency splitting in a hoop resonator working at an distinctive level. Phys. Rev. A 96, 033382 (2017).
Hokmabadi, M. P., Schumer, A., Christodoulides, D. N. & Khajavikhan, M. Non-Hermitian ring laser gyroscopes with enhanced Sagnac sensitivity. Nature 576, 70–74 (2019).
Lai, Y.-H., Lu, Y.-Okay., Suh, M.-G., Yuan, Z. & Vahala, Okay. Remark of the exceptional-point-enhanced Sagnac impact. Nature 576, 65–69 (2019).
Zhang, H. et al. Breaking anti-PT symmetry by spinning a resonator. Nano Lett. 20, 7594–7599 (2020).
Chen, W. et al. Parity–time-symmetric whispering-gallery mode nanoparticle sensor [Invited]. Photonics Res. 6, A23 (2018).
Dong, Z., Li, Z., Yang, F., Qiu, C.-W. & Ho, J. S. Delicate readout of implantable microsensors utilizing a wi-fi system locked to an distinctive level. Nat. Electron. 2, 335–342 (2019).
Hajizadegan, M., Sakhdari, M., Liao, S. & Chen, P.-Y. Excessive-sensitivity wi-fi displacement sensing enabled by PT-symmetric telemetry. IEEE Trans. Antennas Propag. 67, 3445–3449 (2019).
Zhao, H., Chen, Z., Zhao, R. & Feng, L. Distinctive level engineered glass slide for microscopic thermal mapping. Nat. Commun. 9, 1764 (2018).
Hodaei, H. et al. Enhanced sensitivity at higher-order distinctive factors. Nature 548, 187–191 (2017).
Park, J.-H. et al. Symmetry-breaking-induced plasmonic distinctive factors and nanoscale sensing. Nat. Phys. 16, 462–468 (2020).
Wang, H., Lai, Y.-H., Yuan, Z., Suh, M.-G. & Vahala, Okay. Petermann-factor sensitivity restrict close to an distinctive level in a Brillouin ring laser gyroscope. Nat. Commun. 11, 1610 (2020).
Mortensen, N. A. et al. Fluctuations and noise-limited sensing close to the distinctive level of parity–time-symmetric resonator techniques. Optica 5, 1342 (2018).
Langbein, W. No distinctive precision of exceptional-point sensors. Phys. Rev. A 98, 023805 (2018).
Lau, H.-Okay. & Clerk, A. A. Basic limits and non-reciprocal approaches in non-Hermitian quantum sensing. Nat. Commun. 9, 4320 (2018).
Zhang, M. et al. Quantum noise principle of outstanding level amplifying sensors. Phys. Rev. Lett. 123, 180501 (2019).
Peters, Okay. J. & Rodriguez, S. R. Distinctive precision of a nonlinear optical sensor at a square-root singularity. Phys. Rev. Lett. 129, 13901 (2022).
Bai, Okay. et al. Nonlinearity-enabled higher-order distinctive singularities with ultra-enhanced signal-to-noise ratio. Natl Sci. Rev. 10, nwac259 (2023).
Jahromi, A. Okay., Hassan, A. U., Christodoulides, D. N. & Abouraddy, A. F. Statistical parity–time-symmetric lasing in an optical fibre community. Nat. Commun. 8, 1359 (2017).
Xu, H., Mason, D., Jiang, L. & Harris, J. G. Topological vitality switch in an optomechanical system with distinctive factors. Nature 537, 80–83 (2016).
Geng, Q. & Zhu, Okay.-D. Discrepancy between transmission spectrum splitting and eigenvalue splitting: a reexamination on distinctive point-based sensors. Photonics Res. 9, 1645 (2021).
Aspelmeyer, M., Kippenberg, T. J. & Marquardt, F. Cavity optomechanics. Rev. Mod. Phys. 86, 1391–1452 (2014).
Sang, Y. et al. Spatial nonreciprocal transmission and optical bistability primarily based on millimeter-scale suspended metasurface. Adv. Decide. Mater. 10, 2201523 (2022).
Shao, L. et al. Detection of single nanoparticles and lentiviruses utilizing microcavity resonance broadening. Adv. Mater. 25, 5616–5620 (2013).
Xu, J. et al. Dataset for “Single-cavity loss-enabled nanometrology”. Zenodo https://doi.org/10.5281/zenodo.11382571 (2024).