Wednesday, September 10, 2025
HomeNanotechnologySingle-cavity loss-enabled nanometrology | Nature Nanotechnology

Single-cavity loss-enabled nanometrology | Nature Nanotechnology


  • Kononchuk, R., Cai, J., Ellis, F., Thevamaran, R. & Kottos, T. Distinctive-point-based accelerometers with enhanced signal-to-noise ratio. Nature 607, 697–702 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhou, F. et al. Broadband thermomechanically restricted sensing with an optomechanical accelerometer. Optica 8, 350 (2021).

    Article 

    Google Scholar
     

  • Liu, Y., Miao, H., Aksyuk, V. & Srinivasan, Okay. Broad cantilever stiffness vary cavity optomechanical sensors for atomic drive microscopy. Decide. Specific 20, 18268 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Xue, C. et al. Precision measurement of the Newtonian gravitational fixed. Natl Sci. Rev. 7, 1803–1817 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Forstner, S. et al. Ultrasensitive optomechanical magnetometry. Adv. Mater. 26, 6348–6353 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Jiang, M., Su, H., Garcon, A., Peng, X. & Budker, D. Seek for axion-like darkish matter with spin-based amplifiers. Nat. Phys. 17, 1402–1407 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Rossi, M., Mason, D., Chen, J., Tsaturyan, Y. & Schliesser, A. Measurement-based quantum management of mechanical movement. Nature 563, 53–58 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wei, X., Sheng, J., Wu, Y., Liu, W. & Wu, H. Twin-beam-enhanced displacement measurement of a membrane in a cavity. Appl. Phys. Lett. 115, 251105 (2019).

    Article 

    Google Scholar
     

  • Abbott, B. P., Abbott, R., Abbott, T. D. & Abernathy GW151226: remark of gravitational waves from a 22-solar-mass binary black gap coalescence. Phys. Rev. Lett. 116, 241103 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Møller, C. B. et al. Quantum back-action-evading measurement of movement in a detrimental mass reference body. Nature 547, 191–195 (2017).

    Article 
    PubMed 

    Google Scholar
     

  • Shomroni, I., Qiu, L., Malz, D., Nunnenkamp, A. & Kippenberg, T. J. Optical backaction-evading measurement of a mechanical oscillator. Nat. Commun. 10, 2086 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Guo, Y. et al. Enhancing squeezing and nonclassicality of sunshine in atom-optomechanical techniques. Ann. Phys. 530, 1800138 (2018).

  • Tang, L. et al. Quantum squeezing induced optical nonreciprocity. Phys. Rev. Lett. 128, 083604 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wan, L.-L. & Lü, X.-Y. Quantum-squeezing-induced point-gap topology and pores and skin impact. Phys. Rev. Lett. 130, 203605 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kampel, N. S. et al. Enhancing broadband displacement detection with quantum correlations. Phys. Rev. X 7, 021008 (2017).


    Google Scholar
     

  • Yuan, G. H. & Zheludev, X. I. Detecting nanometric displacements with optical ruler metrology. Science 775, 771–775 (2019).

    Article 

    Google Scholar
     

  • Xia, Okay. & Evers, J. Floor state cooling of a nanomechanical resonator within the nonresolved regime by way of quantum interference. Phys. Rev. Lett. 103, 227203 (2009).

    Article 
    PubMed 

    Google Scholar
     

  • Li, A. et al. Distinctive factors and non-Hermitian photonics on the nanoscale. Nat. Nanotechnol. 18, 706–720 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ashida, Y., Gong, Z. & Ueda, M. Non-Hermitian physics. Adv. Phys. 69, 249–435 (2020).

    Article 

    Google Scholar
     

  • Özdemir, Ş. Okay., Rotter, S., Nori, F. & Yang, L. Parity–time symmetry and distinctive factors in photonics. Nat. Mater. 18, 783–798 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Miri, M.-A. & Alù, A. Distinctive factors in optics and photonics. Science 363, eaar7709 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Konotop, V. V., Yang, J. & Zezyulin, D. A. Nonlinear waves in PT-symmetric techniques. Rev. Mod. Phys. 88, 035002 (2016).

    Article 

    Google Scholar
     

  • El-Ganainy, R. et al. Non-Hermitian physics and PT symmetry. Nat. Phys. 14, 11–19 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Guo, A. et al. Remark of PT-symmetry breaking in advanced optical potentials. Phys. Rev. Lett. 103, 093902 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Peng, B. et al. Loss-induced suppression and revival of lasing. Science 346, 328–332 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chong, Y. D., Ge, L. & Stone, A. D. PT-symmetry breaking and laser-absorber modes in optical scattering techniques. Phys. Rev. Lett. 106, 093902 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wong, Z. J. et al. Lasing and anti-lasing in a single cavity. Nat. Photonics 10, 796–801 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Wang, C., Sweeney, W. R., Stone, A. D. & Yang, L. Coherent good absorption at an distinctive level. Science 373, 1261–1265 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chen, B., Guo, Y. & Shen, H. Spontaneous section locking of mechanical multimodes in anti-parity–time optomechanics. Decide. Specific 28, 28762 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Jing, H. et al. PT-symmetric phonon laser. Phys. Rev. Lett. 113, 053604 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Huang, X., Lu, C., Liang, C., Tao, H. & Liu, Y.-C. Loss-induced nonreciprocity. Gentle Sci. Appl. 10, 30 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Budich, J. C. & Bergholtz, E. J. Non-Hermitian topological sensors. Phys. Rev. Lett. 125, 180403 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhao, H. et al. Non-Hermitian topological gentle steering. Science 365, 1163–1166 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wiersig, J. Enhancing the sensitivity of frequency and vitality splitting detection by utilizing distinctive factors: utility to microcavity sensors for single-particle detection. Phys. Rev. Lett. 112, 203901 (2014).

    Article 

    Google Scholar
     

  • Wiersig, J. Overview of outstanding point-based sensors. Photonics Res. 8, 1457 (2020).

    Article 

    Google Scholar
     

  • Chen, W., Kaya Özdemir, Ş., Zhao, G., Wiersig, J. & Yang, L. Distinctive factors improve sensing in an optical microcavity. Nature 548, 192–196 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sunada, S. Massive Sagnac frequency splitting in a hoop resonator working at an distinctive level. Phys. Rev. A 96, 033382 (2017).

    Article 

    Google Scholar
     

  • Hokmabadi, M. P., Schumer, A., Christodoulides, D. N. & Khajavikhan, M. Non-Hermitian ring laser gyroscopes with enhanced Sagnac sensitivity. Nature 576, 70–74 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Lai, Y.-H., Lu, Y.-Okay., Suh, M.-G., Yuan, Z. & Vahala, Okay. Remark of the exceptional-point-enhanced Sagnac impact. Nature 576, 65–69 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang, H. et al. Breaking anti-PT symmetry by spinning a resonator. Nano Lett. 20, 7594–7599 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chen, W. et al. Parity–time-symmetric whispering-gallery mode nanoparticle sensor [Invited]. Photonics Res. 6, A23 (2018).

    Article 

    Google Scholar
     

  • Dong, Z., Li, Z., Yang, F., Qiu, C.-W. & Ho, J. S. Delicate readout of implantable microsensors utilizing a wi-fi system locked to an distinctive level. Nat. Electron. 2, 335–342 (2019).

    Article 

    Google Scholar
     

  • Hajizadegan, M., Sakhdari, M., Liao, S. & Chen, P.-Y. Excessive-sensitivity wi-fi displacement sensing enabled by PT-symmetric telemetry. IEEE Trans. Antennas Propag. 67, 3445–3449 (2019).

    Article 

    Google Scholar
     

  • Zhao, H., Chen, Z., Zhao, R. & Feng, L. Distinctive level engineered glass slide for microscopic thermal mapping. Nat. Commun. 9, 1764 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hodaei, H. et al. Enhanced sensitivity at higher-order distinctive factors. Nature 548, 187–191 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Park, J.-H. et al. Symmetry-breaking-induced plasmonic distinctive factors and nanoscale sensing. Nat. Phys. 16, 462–468 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Wang, H., Lai, Y.-H., Yuan, Z., Suh, M.-G. & Vahala, Okay. Petermann-factor sensitivity restrict close to an distinctive level in a Brillouin ring laser gyroscope. Nat. Commun. 11, 1610 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mortensen, N. A. et al. Fluctuations and noise-limited sensing close to the distinctive level of parity–time-symmetric resonator techniques. Optica 5, 1342 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Langbein, W. No distinctive precision of exceptional-point sensors. Phys. Rev. A 98, 023805 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Lau, H.-Okay. & Clerk, A. A. Basic limits and non-reciprocal approaches in non-Hermitian quantum sensing. Nat. Commun. 9, 4320 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang, M. et al. Quantum noise principle of outstanding level amplifying sensors. Phys. Rev. Lett. 123, 180501 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Peters, Okay. J. & Rodriguez, S. R. Distinctive precision of a nonlinear optical sensor at a square-root singularity. Phys. Rev. Lett. 129, 13901 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Bai, Okay. et al. Nonlinearity-enabled higher-order distinctive singularities with ultra-enhanced signal-to-noise ratio. Natl Sci. Rev. 10, nwac259 (2023).

    Article 
    PubMed 

    Google Scholar
     

  • Jahromi, A. Okay., Hassan, A. U., Christodoulides, D. N. & Abouraddy, A. F. Statistical parity–time-symmetric lasing in an optical fibre community. Nat. Commun. 8, 1359 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xu, H., Mason, D., Jiang, L. & Harris, J. G. Topological vitality switch in an optomechanical system with distinctive factors. Nature 537, 80–83 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Geng, Q. & Zhu, Okay.-D. Discrepancy between transmission spectrum splitting and eigenvalue splitting: a reexamination on distinctive point-based sensors. Photonics Res. 9, 1645 (2021).

    Article 

    Google Scholar
     

  • Aspelmeyer, M., Kippenberg, T. J. & Marquardt, F. Cavity optomechanics. Rev. Mod. Phys. 86, 1391–1452 (2014).

    Article 

    Google Scholar
     

  • Sang, Y. et al. Spatial nonreciprocal transmission and optical bistability primarily based on millimeter-scale suspended metasurface. Adv. Decide. Mater. 10, 2201523 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Shao, L. et al. Detection of single nanoparticles and lentiviruses utilizing microcavity resonance broadening. Adv. Mater. 25, 5616–5620 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Xu, J. et al. Dataset for “Single-cavity loss-enabled nanometrology”. Zenodo https://doi.org/10.5281/zenodo.11382571 (2024).

  • RELATED ARTICLES

    LEAVE A REPLY

    Please enter your comment!
    Please enter your name here

    Most Popular

    Recent Comments