Stanley JO, Mohamed SA. Most cancers immunotherapy: a short overview of the historical past, potentialities, and challenges forward. J Most cancers Metastasis Deal with. 2017;3:250–61. https://doi.org/10.20517/2394-4722.2017.41.
Chow MT, Möller A, Smyth MJ. Irritation and immune surveillance in most cancers. Seminars Most cancers Biol. 2012;22(1):23–32. https://doi.org/10.1016/j.semcancer.2011.12.004.
Halliday GM, Patel A, Hunt MJ, Tefany FJ, Barnetson RSC. Spontaneous regression of human melanoma/nonmelanoma pores and skin most cancers: affiliation with infiltrating CD4+ T cells. World J Surg. 1995;19:352–8.
Huang R, Wen Q, Zhang X. CAR-NK cell remedy for hematological malignancies: latest updates from ASH 2022. J Hematol Oncol. 2023;16(1):35. https://doi.org/10.1186/s13045-023-01435-3.
Włodarczyk M, Pyrzynska B. CAR-NK as a quickly developed and environment friendly immunotherapeutic technique towards most cancers. Cancers. 2023;15:117. https://doi.org/10.3390/cancers15010117.
Yang Ok, Zhao Y, Solar G, Zhang X, Cao J, Shao M, et al. Medical software and prospect of immune checkpoint inhibitors for CAR-NK cell in tumor immunotherapy. Entrance Immunol. 2023. https://doi.org/10.3389/fimmu.2022.1081546.
Hadiloo Ok, Tahmasebi S, Esmaeilzadeh A. CAR-NKT cell remedy: a brand new promising paradigm of most cancers immunotherapy. Most cancers Cell Int. 2023;23(1):86. https://doi.org/10.1186/s12935-023-02923-9.
Pan Ok, Farrukh H, Chittepu VCSR, Xu H, Pan C-X, Zhu Z. CAR race to most cancers immunotherapy: from CAR T, CAR NK to CAR macrophage remedy. J Exp Clin Most cancers Res. 2022;41(1):119. https://doi.org/10.1186/s13046-022-02327-z.
Mishra AK, Malonia SK. Advancing mobile immunotherapy with macrophages. Life Sci. 2023;328: 121857. https://doi.org/10.1016/j.lfs.2023.121857.
Fu W, Lei C, Ma Z, Qian Ok, Li T, Zhao J, Hu S. CAR macrophages for SARS-CoV-2 immunotherapy. Entrance Immunol. 2021. https://doi.org/10.3389/fimmu.2021.669103.
Fry TJ, Shah NN, Orentas RJ, Stetler-Stevenson M, Yuan CM, Ramakrishna S, et al. CD22-targeted CAR T cells induce remission in B-ALL that’s naive or proof against CD19-targeted CAR immunotherapy. Nat Med. 2018;24(1):20–8.
Schuster SJ, Bishop MR, Tam CS, Waller EK, Borchmann P, McGuirk JP, et al. Tisagenlecleucel in grownup relapsed or refractory diffuse giant B-Cell lymphoma. N Engl J Med. 2018;380(1):45–56. https://doi.org/10.1056/NEJMoa1804980.
Raje N, Berdeja J, Lin Y, Siegel D, Jagannath S, Madduri D, et al. Anti-BCMA CAR T-Cell remedy bb2121 in relapsed or refractory a number of myeloma. N Engl J Med. 2019;380(18):1726–37. https://doi.org/10.1056/NEJMoa1817226.
Jacobson C, Chavez JC, Sehgal AR, William BM, Munoz J, Salles G, et al. Major evaluation of zuma-5: a section 2 research of axicabtagene ciloleucel (Axi-Cel) in sufferers with relapsed/refractory (R/R) indolent non-Hodgkin lymphoma (iNHL). Blood. 2020;136:40–1. https://doi.org/10.1182/blood-2020-136834.
Strati P, Ahmed S, Furqan F, Fayad LE, Lee HJ, Iyer SP, et al. Prognostic impression of corticosteroids on efficacy of chimeric antigen receptor T-cell remedy in giant B-cell lymphoma. Blood. 2021;137(23):3272–6. https://doi.org/10.1182/blood.2020008865.
Munshi NC, Anderson LD, Shah N, Madduri D, Berdeja J, Lonial S, et al. Idecabtagene vicleucel in relapsed and refractory a number of myeloma. N Engl J Med. 2021;384(8):705–16. https://doi.org/10.1056/NEJMoa2024850.
Khawar MB, Afzal A, Abbasi MH, Sheikh N, Solar H. Nano-immunoengineering of CAR-T cell remedy towards tumor microenvironment: the way in which ahead in combating most cancers. OpenNano. 2023;10: 100124. https://doi.org/10.1016/j.onano.2023.100124.
Khawar MB, Ge F, Afzal A, Solar H. From limitations to novel methods: smarter CAR T remedy hits arduous to tumors. Entrance Immunol. 2023. https://doi.org/10.3389/fimmu.2023.1203230.
Abbasi MH, Riaz A, Khawar MB, Farooq A, Majid A, Sheikh N. CAR-T-Cell remedy: current progress and future methods. Biomedical Analysis and Remedy. 2022;9(2):4920–9.
Daei Sorkhabi A, Mohamed Khosroshahi L, Sarkesh A, Mardi A, Aghebati-Maleki A, Aghebati-Maleki L, Baradaran B. The present panorama of CAR T-cell remedy for stable tumors: mechanisms, analysis progress, challenges, and counterstrategies. Entrance Immunol. 2023. https://doi.org/10.3389/fimmu.2023.1113882.
Cobb DA, Lee DW. Cytokine launch syndrome biology and administration. Most cancers J. 2021;27(2):119–25.
De Marco RC, Monzo HJ, Ojala PM. CAR T cell remedy: a flexible residing drug. Int J Mol Sci. 2023. https://doi.org/10.3390/ijms24076300.
Atsavapranee ES, Billingsley MM, Mitchell MJ. Supply applied sciences for T cell gene modifying: purposes in most cancers immunotherapy. EBioMedicine. 2021;67: 103354. https://doi.org/10.1016/j.ebiom.2021.103354.
Blache U, Popp G, Dünkel A, Koehl U, Fricke S. Potential options for manufacture of CAR T cells in most cancers immunotherapy. Nat Commun. 2022;13(1):5225. https://doi.org/10.1038/s41467-022-32866-0.
Parayath NN, Stephan SB, Koehne AL, Nelson PS, Stephan MT. In vitro-transcribed antigen receptor mRNA nanocarriers for transient expression in circulating T cells in vivo. Nat Commun. 2020;11(1):6080.
Xin T, Cheng L, Zhou C, Zhao Y, Hu Z, Wu X. In-vivo induced CAR-T cell for the potential breakthrough to beat the limitations of present CAR-T cell remedy. Entrance Oncol. 2022;12: 809754.
Ye B, Hu Y, Zhang M, Huang H. Analysis advance in lipid nanoparticle-mRNA supply system and its software in CAR-T cell remedy. J Zhejiang Univ Med Sci. 2022;51(2):185–91.
Kitte R, Rabel M, Geczy R, Park S, Fricke S, Koehl U, Tretbar US. Lipid nanoparticles outperform electroporation in mRNA-based CAR T cell engineering. Mol Ther Strategies Clin Dev. 2023. https://doi.org/10.1016/j.omtm.2023.101139.
Bulcha JT, Wang Y, Ma H, Tai PWL, Gao G. Viral vector platforms inside the gene remedy panorama. Sign Transduct Goal Ther. 2021;6(1):53.
Moretti A, Ponzo M, Nicolette CA, Tcherepanova IY, Biondi A, Magnani CF. The previous, current, and way forward for non-viral CAR T cells. Entrance Immunol. 2022. https://doi.org/10.3389/fimmu.2022.867013.
Ranzani M, Annunziato S, Adams DJ, Montini E. Most cancers gene discovery: exploiting insertional mutagenesis. Mol Most cancers Res. 2013;11(10):1141–58.
Khan AN, Chowdhury A, Karulkar A, Jaiswal AK, Banik A, Asija S, Purwar R. Immunogenicity of CAR-T cell therapeutics: proof, mechanism and mitigation. Entrance Immunol. 2022;13: 886546.
Moço PD, Aharony N, Kamen A. Adeno-associated viral vectors for homology-directed era of CAR-T cells. Biotechnol J. 2020;15(1):1900286.
Irving M, Lanitis E, Migliorini D, Ivics Z, Guedan S. Selecting the best instrument for genetic engineering: scientific classes from chimeric antigen receptor-T cells. Hum Gene Ther. 2021;32(19–20):1044–58. https://doi.org/10.1089/hum.2021.173.
Zhang J, Hu Y, Yang J, Li W, Zhang M, Wang Q, et al. Non-viral, particularly focused CAR-T cells obtain excessive security and efficacy in B-NHL. Nature. 2022;609(7926):369–74. https://doi.org/10.1038/s41586-022-05140-y.
Balke-Need H, Keerthi V, Cadinanos-Garai A, Fowler C, Gkitsas N, Brown AK, et al. Non-viral chimeric antigen receptor (CAR) T cells going viral. Immuno-Oncol Technol. 2023. https://doi.org/10.1016/j.iotech.2023.100375.
Li J, Røise JJ, He M, Das R, Murthy N. Non-viral methods for delivering genome modifying enzymes. Adv Drug Deliv Rev. 2021;168:99–117.
Krug C, Wiesinger M, Abken H, Schuler-Thurner B, Schuler G, Dörrie J, Schaft N. A GMP-compliant protocol to increase and transfect most cancers affected person T cells with mRNA encoding a tumor-specific chimeric antigen receptor. Most cancers Immunol Immunother. 2014;63(10):999–1008. https://doi.org/10.1007/s00262-014-1572-5.
Wiesinger M, März J, Kummer M, Schuler G, Dörrie J, Schuler-Thurner B, Schaft N. Medical-scale manufacturing of CAR-T cells for the remedy of melanoma sufferers by mRNA transfection of a CSPG4-specific CAR underneath full GMP compliance. Cancers. 2019. https://doi.org/10.3390/cancers11081198.
Cichocki F, Grzywacz B, Miller JS. Human NK cell improvement: one highway or many? Entrance Immunol. 2019;10:2078.
Shin MH, Kim J, Lim SA, Kim J, Kim S-J, Lee Ok-M. NK cell-based immunotherapies in most cancers. Immune Netw. 2020. https://doi.org/10.4110/in.2020.20.e14.
Xuan G, Tanel M, Qian Y, Srinivas S, Shuyang H, Hemlata R, et al. Ablation with CRISPR/Cas9 enhances cytotoxicity of human placental stem cell-derived NK cells for most cancers immunotherapy. J Immunother Most cancers. 2021;9(3): e001975. https://doi.org/10.1136/jitc-2020-001975.
Jogalekar MP, Rajendran RL, Khan F, Dmello C, Gangadaran P, Ahn B-C. CAR T-cell-based gene remedy for cancers: new views, challenges, and scientific developments. Entrance Immunol. 2022. https://doi.org/10.3389/fimmu.2022.925985.
Harris E, Elmer JJ. Optimization of electroporation and different non-viral gene supply methods for T cells. Biotechnol Progr. 2021;37(1): e3066. https://doi.org/10.1002/btpr.3066.
Kavanagh H, Dunne S, Martin DS, McFadden E, Gallagher L, Schwaber J, et al. A novel non-viral supply technique that permits environment friendly engineering of major human T cells for ex vivo cell remedy purposes. Cytotherapy. 2021;23(9):852–60. https://doi.org/10.1016/j.jcyt.2021.03.002.
VanderBurgh JA, Corso TN, Levy SL, Craighead HG. Scalable continuous-flow electroporation platform enabling T cell transfection for mobile remedy manufacturing. Sci Rep. 2023;13(1):6857. https://doi.org/10.1038/s41598-023-33941-2.
Bozza M, De Roia A, Correia MP, Berger A, Tuch A, Schmidt A, et al. A nonviral, nonintegrating DNA nanovector platform for the protected, fast, and protracted manufacture of recombinant T cells. Sci Adv. 2021;7(16): eabf1333. https://doi.org/10.1126/sciadv.abf1333.
Shin S, Lee P, Han J, Kim S-N, Lim J, Park D-H, et al. Nanoparticle-based chimeric antigen receptor remedy for most cancers immunotherapy. Tissue Eng Regener Med. 2023;20(3):371–87. https://doi.org/10.1007/s13770-022-00515-8.
Li S, Hu Y, Li A, Lin J, Hsieh Ok, Schneiderman Z, et al. Payload distribution and capability of mRNA lipid nanoparticles. Nat Commun. 2022;13(1):5561. https://doi.org/10.1038/s41467-022-33157-4.
Zhao Y, Huang L. Chapter two – lipid nanoparticles for gene supply. In: Huang L, Liu D, Wagner E, editors. Advances in genetics. Educational Press: Cambridge; 2014. p. 13–36.
Jung HN, Lee S-Y, Lee S, Youn H, Im H-J. Lipid nanoparticles for supply of RNA therapeutics: present standing and the function of in vivo imaging. Theranostics. 2022;12(17):7509–31. https://doi.org/10.7150/thno.77259.
Geng C, Zhou Ok, Yan Y, Li C, Ni B, Liu J, et al. A preparation technique for mRNA-LNPs with improved properties. J Managed Launch. 2023;364:632–43. https://doi.org/10.1016/j.jconrel.2023.11.017.
Zhu Y, Shen R, Vuong I, Reynolds RA, Shears MJ, Yao Z-C, et al. Multi-step screening of DNA/lipid nanoparticles and co-delivery with siRNA to reinforce and lengthen gene expression. Nat Commun. 2022;13(1):4282. https://doi.org/10.1038/s41467-022-31993-y.
Doktorovova S, Souto EB, Silva AM. Nanotoxicology utilized to stable lipid nanoparticles and nanostructured lipid carriers – a scientific overview of in vitro knowledge. Eur J Pharm Biopharm. 2014;87(1):1–18. https://doi.org/10.1016/j.ejpb.2014.02.005.
Samadi A, Sartipi Z, Ahmad Nasrollahi S, Sheikholeslami B, Nassiri Kashani M, Rouini MR, et al. Efficacy assessments of tretinoin-loaded nano lipid carriers in pimples vulgaris: a double blind, split-face randomized scientific research. Arch Dermatol Res. 2022;314(6):553–61. https://doi.org/10.1007/s00403-021-02256-5.
Cao Q, Li X, Zhang Q, Zhou Ok, Yu Y, He Z, et al. Large knowledge evaluation of producing and preclinical research of nanodrug-targeted supply methods: a literature overview. Biomed Res Int. 2022;2022:1231446. https://doi.org/10.1155/2022/1231446.
Veiga N, Goldsmith M, Granot Y, Rosenblum D, Dammes N, Kedmi R, et al. Cell particular supply of modified mRNA expressing therapeutic proteins to leukocytes. Nat Commun. 2018;9(1):4493.
Di J, Du Z, Wu Ok, Jin S, Wang X, Li T, Xu Y. Biodistribution and non-linear gene expression of mRNA LNPs affected by supply route and particle dimension. Pharm Res. 2022;39(1):105–14. https://doi.org/10.1007/s11095-022-03166-5.
Álvarez-Benedicto E, Tian Z, Chatterjee S, Orlando D, Kim M, Guerrero ED, et al. Spleen SORT LNP generated in situ CAR T cells lengthen survival in a mouse mannequin of lymphoreplete B cell lymphoma. Angew Chem. 2023;135(44): e202310395.
Patel SK, Billingsley MM, Frazee C, Han X, Swingle KL, Qin J, et al. Hydroxycholesterol substitution in ionizable lipid nanoparticles for mRNA supply to T cells. J Managed Launch. 2022;347:521–32. https://doi.org/10.1016/j.jconrel.2022.05.020.
Qiu M, Li Y, Bloomer H, Xu Q. Creating biodegradable lipid nanoparticles for intracellular mRNA supply and genome modifying. Acc Chem Res. 2021;54(21):4001–11. https://doi.org/10.1021/acs.accounts.1c00500.
Patel SK, Billingsley MM, Mukalel AJ, Thatte AS, Hamilton AG, Gong N, et al. Bile acid-containing lipid nanoparticles improve extrahepatic mRNA supply. Theranostics. 2024;14(1):1–16. https://doi.org/10.7150/thno.89913.
Billingsley MM, Singh N, Ravikumar P, Zhang R, June CH, Mitchell MJ. Ionizable lipid nanoparticle-mediated mRNA supply for human CAR T cell engineering. Nano Lett. 2020;20(3):1578–89. https://doi.org/10.1021/acs.nanolett.9b04246.
Zhang X, Su Ok, Wu S, Lin L, He S, Yan X, et al. One-component cationic lipids for systemic mRNA supply to splenic T cells. Angew Chem. 2024. https://doi.org/10.1002/ange.202405444.
Wang H, Wang Y, Yuan C, Xu X, Zhou W, Huang Y, et al. Polyethylene glycol (PEG)-associated immune responses triggered by clinically related lipid nanoparticles in rats. NPJ Vaccines. 2023;8(1):169. https://doi.org/10.1038/s41541-023-00766-z.
Wang C, Zhao C, Wang W, Liu X, Deng H. Biomimetic noncationic lipid nanoparticles for mRNA supply. Proc Natl Acad Sci. 2023;120(51): e2311276120. https://doi.org/10.1073/pnas.2311276120.
Mukalel AJ, Riley RS, Zhang R, Mitchell MJ. Nanoparticles for nucleic acid supply: purposes in most cancers immunotherapy. Most cancers Lett. 2019;458:102–12. https://doi.org/10.1016/j.canlet.2019.04.040.
Zhang R, El-Mayta R, Murdoch TJ, Warzecha CC, Billingsley MM, Shepherd SJ, et al. Helper lipid construction influences protein adsorption and supply of lipid nanoparticles to spleen and liver. Biomater Sci. 2021;9(4):1449–63.
Paunovska Ok, Da Silva Sanchez AJ, Lokugamage MP, Loughrey D, Echeverri ES, Cristian A, et al. The extent to which lipid nanoparticles require apolipoprotein e and low-density lipoprotein receptor for supply modifications with ionizable lipid construction. Nano Lett. 2022;22(24):10025–33. https://doi.org/10.1021/acs.nanolett.2c03741.
Cheng Q, Wei T, Farbiak L, Johnson LT, Dilliard SA, Siegwart DJ. Selective organ concentrating on (SORT) nanoparticles for tissue-specific mRNA supply and CRISPR–Cas gene modifying. Nat Nanotechnol. 2020;15(4):313–20.
Ramishetti S, Hazan-Halevy I, Palakuri R, Chatterjee S, Naidu Gonna S, Dammes N, et al. A combinatorial library of lipid nanoparticles for RNA supply to leukocytes. Adv Mater. 2020;32(12):1906128.
Dammes N, Goldsmith M, Ramishetti S, Dearling JLJ, Veiga N, Packard AB, Peer D. Conformation-sensitive concentrating on of lipid nanoparticles for RNA therapeutics. Nat Nanotechnol. 2021;16(9):1030–8.
von Auw N, Serfling R, Kitte R, Hilger N, Zhang C, Gebhardt C, et al. Comparability of two lab-scale protocols for enhanced mRNA-based CAR-T cell era and performance. Sci Rep. 2023;13(1):18160. https://doi.org/10.1038/s41598-023-45197-x.
Tanaka H, Miyama R, Sakurai Y, Tamagawa S, Nakai Y, Tange Ok, et al. Enchancment of mRNA supply effectivity to a T cell line by modulating PEG-Lipid content material and phospholipid parts of lipid nanoparticles. Pharmaceutics. 2021. https://doi.org/10.3390/pharmaceutics13122097.
Chander N, Basha G, Yan Cheng MH, Witzigmann D, Cullis PR. Lipid nanoparticle mRNA methods containing excessive ranges of sphingomyelin engender greater protein expression in hepatic and extra-hepatic tissues. Mol Ther Strategies Clin Dev. 2023;30:235–45. https://doi.org/10.1016/j.omtm.2023.06.005.
Cabral H, Li J, Miyata Ok, Kataoka Ok. Controlling the biodistribution and clearance of nanomedicines. Nat Rev Bioeng. 2023;2:1–19.
Billingsley MM, Hamilton AG, Mai D, Patel SK, Swingle KL, Sheppard NC, et al. Orthogonal design of experiments for optimization of lipid nanoparticles for mRNA engineering of CAR T cells. Nano Lett. 2022;22(1):533–42. https://doi.org/10.1021/acs.nanolett.1c02503.
Billingsley MM, Gong N, Mukalel AJ, Thatte AS, El-Mayta R, Patel SK, et al. In Vivo mRNA CAR T cell engineering by way of focused ionizable lipid nanoparticles with extrahepatic tropism. Small. 2024;20(11):2304378. https://doi.org/10.1002/smll.202304378.
Zhou J-E, Solar L, Jia Y, Wang Z, Luo T, Tan J, et al. Lipid nanoparticles produce chimeric antigen receptor T cells with interleukin-6 knockdown in vivo. J Managed Launch. 2022;350:298–307. https://doi.org/10.1016/j.jconrel.2022.08.033.
Pinto IS, Cordeiro RA, Faneca H. Polymer- and lipid-based gene supply expertise for CAR T cell remedy. J Managed Launch. 2023;353:196–215. https://doi.org/10.1016/j.jconrel.2022.11.038.
Prazeres PHDM, Ferreira H, Costa PAC, da Silva W, Alves MT, Padilla M, et al. Supply of plasmid DNA by ionizable lipid nanoparticles to induce CAR expression in T cells. Int J Nanomed. 2023;18:5891–904.
Hamilton AG, Swingle KL, Joseph RA, Mai D, Gong N, Billingsley MM, et al. Ionizable lipid nanoparticles with built-in immune checkpoint inhibition for mRNA CAR T cell engineering. Adv Healthc Mater. 2023;12(30):2301515. https://doi.org/10.1002/adhm.202301515.
Chaudhary N, Weissman D, Whitehead KA. mRNA vaccines for infectious ailments: ideas, supply and scientific translation. Nat Rev Drug Discov. 2021;20(11):817–38. https://doi.org/10.1038/s41573-021-00283-5.
Carrasco MJ, Alishetty S, Alameh M-G, Stated H, Wright L, Paige M, et al. Ionization and structural properties of mRNA lipid nanoparticles affect expression in intramuscular and intravascular administration. Commun Biol. 2021;4(1):956. https://doi.org/10.1038/s42003-021-02441-2.
Shi L, Zhang J, Zhao M, Tang S, Cheng X, Zhang W, et al. Results of polyethylene glycol on the floor of nanoparticles for focused drug supply. Nanoscale. 2021;13(24):10748–64.
Padín-González E, Lancaster P, Bottini M, Gasco P, Tran L, Fadeel B, et al. Understanding the function and impression of poly (ethylene glycol) (PEG) on nanoparticle formulation: implications for COVID-19 vaccines. Entrance Bioeng Biotechnol. 2022. https://doi.org/10.3389/fbioe.2022.882363.
Wang MM, Wappelhorst CN, Jensen EL, Chi Y-CT, Rouse JC, Zou Q. Elucidation of lipid nanoparticle floor construction in mRNA vaccines. Sci Rep. 2023;13(1):16744. https://doi.org/10.1038/s41598-023-43898-x.
Hassett KJ, Benenato KE, Jacquinet E, Lee A, Woods A, Yuzhakov O, et al. Optimization of Lipid nanoparticles for intramuscular administration of mRNA vaccines. Mol Ther Nucleic Acids. 2019;15:1–11. https://doi.org/10.1016/j.omtn.2019.01.013.
Tahtinen S, Tong A-J, Himmels P, Oh J, Paler-Martinez A, Kim L, et al. IL-1 and IL-1ra are key regulators of the inflammatory response to RNA vaccines. Nat Immunol. 2022;23(4):532–42.
Li C, Lee A, Grigoryan L, Arunachalam PS, Scott MKD, Trisal M, et al. Mechanisms of innate and adaptive immunity to the Pfizer-BioNTech BNT162b2 vaccine. Nat Immunol. 2022;23(4):543–55.
Lee Y, Jeong M, Park J, Jung H, Lee H. Immunogenicity of lipid nanoparticles and its impression on the efficacy of mRNA vaccines and therapeutics. Exp Mol Med. 2023;55(10):2085–96. https://doi.org/10.1038/s12276-023-01086-x.
Ni H, Hatit MZC, Zhao Ok, Loughrey D, Lokugamage MP, Peck HE, et al. Piperazine-derived lipid nanoparticles ship mRNA to immune cells in vivo. Nat Commun. 2022;13(1):4766. https://doi.org/10.1038/s41467-022-32281-5.
Shi J, Huang M-W, Lu Z-D, Du X-J, Shen S, Xu C-F, Wang J. Supply of mRNA for regulating features of immune cells. J Managed Launch. 2022;345:494–511.
Zabaleta N, Unzu C, Weber ND, Gonzalez-Aseguinolaza G. Gene remedy for liver ailments—progress and challenges. Nat Rev Gastroenterol Hepatol. 2023. https://doi.org/10.1038/s41575-022-00729-0.
Ye Z, Chen J, Zhao X, Li Y, Harmon J, Huang C, et al. In vitro engineering chimeric antigen receptor macrophages and T cells by lipid nanoparticle-mediated mRNA supply. ACS Biomater Sci Eng. 2022;8(2):722–33. https://doi.org/10.1021/acsbiomaterials.1c01532.
Mianné J, Nasri A, Van CN, Bourguignon C, Fieldès M, Ahmed E, et al. CRISPR/Cas9-mediated gene knockout and interallelic gene conversion in human induced pluripotent stem cells utilizing non-integrative bacteriophage-chimeric retrovirus-like particles. BMC Biol. 2022;20(1):8. https://doi.org/10.1186/s12915-021-01214-x.
Zhao X, Chen J, Qiu M, Li Y, Glass Z, Xu Q. Imidazole-based artificial lipidoids for in vivo mRNA supply into major T lymphocytes. Angew Chem. 2020;59(45):20083–9. https://doi.org/10.1002/anie.202008082.
Rurik JG, Tombácz I, Yadegari A, Méndez Fernández PO, Shewale SV, Li L, et al. CAR T cells produced in vivo to deal with cardiac harm. Science. 2022;375(6576):91–6. https://doi.org/10.1126/science.abm0594.
Tombácz I, Laczkó D, Shahnawaz H, Muramatsu H, Natesan A, Yadegari A, et al. Extremely environment friendly CD4+ T cell concentrating on and genetic recombination utilizing engineered CD4+ cell-homing mRNA-LNPs. Mol Ther. 2021;29(11):3293–304. https://doi.org/10.1016/j.ymthe.2021.06.004.
Paunovska Ok, Da Silva Sanchez AJ, Sago CD, Gan Z, Lokugamage MP, Islam FZ, et al. Nanoparticles containing oxidized ldl cholesterol ship mRNA to the liver microenvironment at clinically related doses. Adv Mater. 2019;31(14):1807748. https://doi.org/10.1002/adma.201807748.
Nogueira SS, Schlegel A, Maxeiner Ok, Weber B, Barz M, Schroer MA, et al. Polysarcosine-functionalized lipid nanoparticles for therapeutic mRNA supply. ACS Appl Nano Mater. 2020;3(11):10634–45. https://doi.org/10.1021/acsanm.0c01834.
Napotnik TB, Polajžer T, Miklavčič D. Cell dying because of electroporation–a overview. Bioelectrochemistry. 2021;141: 107871.
Kumar BV, Connors TJ, Farber DL. Human T cell improvement, localization, and performance all through life. Immunity. 2018;48(2):202–13.
Jo S, Das S, Williams A, Chretien A-S, Pagliardini T, Le Roy A, et al. Endowing common CAR T-cell with immune-evasive properties utilizing TALEN-gene modifying. Nat Commun. 2022;13(1):3453.
Li W, Zhang X, Zhang C, Yan J, Hou X, Du S, et al. Biomimetic nanoparticles ship mRNAs encoding costimulatory receptors and improve T cell mediated most cancers immunotherapy. Nat Commun. 2021;12(1):7264.
Parayath NN, Stephan MT. In situ programming of CAR T cells. Ann Rev Biomed Eng. 2021;23:385–405.
Zhao Y, Gan L, Ke D, Chen Q, Fu Y. Mechanisms and analysis advances in mRNA antibody drug-mediated passive immunotherapy. J Transl Med. 2023;21(1):693. https://doi.org/10.1186/s12967-023-04553-1.
Kheirolomoom A, Kare AJ, Ingham ES, Paulmurugan R, Robinson ER, Baikoghli M, et al. In situ T-cell transfection by anti-CD3-conjugated lipid nanoparticles results in T-cell activation, migration, and phenotypic shift. Biomaterials. 2022;281: 121339. https://doi.org/10.1016/j.biomaterials.2021.121339.
Haabeth OAW, Lohmeyer JJK, Sallets A, Blake TR, Sagiv-Barfi I, Czerwinski DK, et al. An mRNA SARS-CoV-2 vaccine using charge-altering releasable transporters with a TLR-9 agonist induces neutralizing antibodies and T cell reminiscence. ACS Cent Sci. 2021;7(7):1191–204. https://doi.org/10.1021/acscentsci.1c00361.
Haabeth OAW, Blake TR, McKinlay CJ, Waymouth RM, Wender PA, Levy R. mRNA vaccination with charge-altering releasable transporters elicits human T cell responses and cures established tumors in mice. Proc Natl Acad Sci. 2018;115(39):E9153–61. https://doi.org/10.1073/pnas.1810002115.
Erasmus JH, Khandhar AP, Guderian J, Granger B, Archer J, Archer M, et al. A nanostructured lipid provider for supply of a replicating viral RNA gives single, low-dose safety towards Zika. Mol Ther. 2018;26(10):2507–22.
Lundstrom Ok. Self-amplifying RNA virus vectors: scientific purposes in most cancers drug supply. Knowledgeable Opin Drug Deliv. 2019;16(10):1027–9.
Lundstrom Ok. Nanoparticle-based supply of self-amplifying RNA. Gene Ther. 2020;27(5):183–5. https://doi.org/10.1038/s41434-020-0132-1.
Blakney AK, McKay PF, Yus BI, Aldon Y, Shattock RJ. Inside out: optimization of lipid nanoparticle formulations for exterior complexation and in vivo supply of saRNA. Gene Ther. 2019;26(9):363–72. https://doi.org/10.1038/s41434-019-0095-2.
Vavassori V, Ferrari S, Beretta S, Asperti C, Albano L, Annoni A, et al. Lipid nanoparticles permit environment friendly and innocent ex vivo gene modifying of human hematopoietic cells. Blood. 2023;142(9):812–26. https://doi.org/10.1182/blood.2022019333.
Kranz LM, Diken M, Haas H, Kreiter S, Loquai C, Reuter KC, et al. Systemic RNA supply to dendritic cells exploits antiviral defence for most cancers immunotherapy. Nature. 2016;534(7607):396–401. https://doi.org/10.1038/nature18300.
Kauffman KJ, Dorkin JR, Yang JH, Heartlein MW, DeRosa F, Mir FF, et al. Optimization of lipid nanoparticle formulations for mRNA supply in vivo with fractional factorial and definitive screening designs. Nano Lett. 2015;15(11):7300–6. https://doi.org/10.1021/acs.nanolett.5b02497.
Chen J, Ye Z, Huang C, Qiu M, Music D, Li Y, Xu Q. Lipid nanoparticle-mediated lymph node–concentrating on supply of mRNA most cancers vaccine elicits strong CD8+ T cell response. Proc Natl Acad Sci. 2022;119(34): e2207841119. https://doi.org/10.1073/pnas.2207841119.
Olden BR, Cheng Y, Jonathan LY, Pun SH. Cationic polymers for non-viral gene supply to human T cells. J Managed Launch. 2018;282:140–7.
Olden BR, Cheng E, Cheng Y, Pun SH. Figuring out key limitations in cationic polymer gene supply to human T cells. Biomater Sci. 2019;7(3):789–97. https://doi.org/10.1039/C8BM01262H.
Wang L, Zhu X, Xu C, Jin D, Ma X. Synthetic breakthrough of cell membrane barrier for transmembrane substance trade: a overview of latest progress. Adv Funct Mater. 2024;34(13):2311920. https://doi.org/10.1002/adfm.202311920.
Ramishetti S, Kedmi R, Goldsmith M, Leonard F, Sprague AG, Godin B, et al. Systemic gene silencing in major T lymphocytes utilizing focused lipid nanoparticles. ACS Nano. 2015;9(7):6706–16. https://doi.org/10.1021/acsnano.5b02796.
McKinlay CJ, Benner NL, Haabeth OA, Waymouth RM, Wender PA. Enhanced mRNA supply into lymphocytes enabled by lipid-varied libraries of charge-altering releasable transporters. Proc Natl Acad Sci. 2018;115(26):E5859–66. https://doi.org/10.1073/pnas.1805358115.
Fenton OS, Kauffman KJ, Kaczmarek JC, McClellan RL, Jhunjhunwala S, Tibbitt MW, et al. Synthesis and organic analysis of ionizable lipid supplies for the in vivo supply of messenger RNA to B lymphocytes. Adv Mater. 2017;29(33):1606944.
Zhang Z, Qi J, Lu Y, Wu W, Yuan H. Peroral concentrating on of drug micro or nanocarriers to websites past the gastrointestinal tract. Med Res Rev. 2021;41(4):2590–8. https://doi.org/10.1002/med.21797.
He H, Lu Y, Qi J, Zhu Q, Chen Z, Wu W. Adapting liposomes for oral drug supply. Acta Pharmaceutica Sinica B. 2019;9(1):36–48. https://doi.org/10.1016/j.apsb.2018.06.005.
Chopyk DM, Grakoui A. Contribution of the intestinal microbiome and intestine barrier to hepatic problems. Gastroenterology. 2020;159(3):849–63. https://doi.org/10.1053/j.gastro.2020.04.077.
Li J, Wang H. Selective organ concentrating on nanoparticles: from design to scientific translation. Nanoscale Horizons. 2023;8(9):1155–73.
Pardi N, Tuyishime S, Muramatsu H, Kariko Ok, Mui BL, Tam YK, et al. Expression kinetics of nucleoside-modified mRNA delivered in lipid nanoparticles to mice by varied routes. J Managed Launch. 2015;217:345–51. https://doi.org/10.1016/j.jconrel.2015.08.007.
Kulkarni JA, Cullis PR, van der Meel R. Lipid nanoparticles enabling gene therapies: from ideas to scientific utility. Nucleic Acid Ther. 2018;28(3):146–57. https://doi.org/10.1089/nat.2018.0721.
Search engine marketing Y, Lim H, Park H, Yu J, An J, Yoo HY, Lee T. Latest progress of lipid nanoparticles-based lipophilic drug supply give attention to floor modifications. Pharmaceutics. 2023. https://doi.org/10.3390/pharmaceutics15030772.
Dilliard SA, Cheng Q, Siegwart DJ. On the mechanism of tissue-specific mRNA supply by selective organ concentrating on nanoparticles. Proc Natl Acad Sci. 2021;118(52): e2109256118. https://doi.org/10.1073/pnas.2109256118.
Xia Y, Fu S, Ma Q, Liu Y, Zhang N. Software of nano-delivery methods in lymph nodes for tumor immunotherapy. Nano-Micro Letters. 2023;15(1):145. https://doi.org/10.1007/s40820-023-01125-2.
Broos Ok, Van der Jeught Ok, Puttemans J, Goyvaerts C, Heirman C, Dewitte H, et al. Particle-mediated intravenous supply of antigen mRNA ends in robust antigen-specific T-cell responses regardless of the induction of kind I interferon. Mol Ther Nucleic Acids. 2016;5: e326.
Pan L, Zhang L, Deng W, Lou J, Gao X, Lou X, et al. Spleen-selective co-delivery of mRNA and TLR4 agonist-loaded LNPs for synergistic immunostimulation and Th1 immune responses. J Managed Launch. 2023;357:133–48. https://doi.org/10.1016/j.jconrel.2023.03.041.
Alameh M-G, Tombácz I, Bettini E, Lederer Ok, Ndeupen S, Sittplangkoon C, et al. Lipid nanoparticles improve the efficacy of mRNA and protein subunit vaccines by inducing strong T follicular helper cell and humoral responses. Immunity. 2021;54(12):2877–92.
Pattipeiluhu R, Arias-Alpizar G, Basha G, Chan KYT, Bussmann J, Sharp TH, et al. Anionic lipid nanoparticles preferentially ship mRNA to the hepatic reticuloendothelial system. Adv Mater. 2022;34(16):2201095. https://doi.org/10.1002/adma.202201095.
Lei S, Chen X, Gao Y, Shuai M, Zhou W, Li J, et al. ALPPL2-binding peptide facilitates focused mRNA supply for environment friendly hepatocellular carcinoma gene remedy. Adv Funct Mater. 2022;32(43):2204342. https://doi.org/10.1002/adfm.202204342.
Dilliard SA, Siegwart DJ. Passive, lively and endogenous organ-targeted lipid and polymer nanoparticles for supply of genetic medication. Nat Rev Mater. 2023;8(4):282–300. https://doi.org/10.1038/s41578-022-00529-7.
Hagino Y, Khalil IA, Kimura S, Kusumoto Ok, Harashima H. GALA-modified lipid nanoparticles for the focused supply of plasmid DNA to the lungs. Mol Pharm. 2021;18(3):878–88.
Parhiz H, Shuvaev VV, Pardi N, Khoshnejad M, Kiseleva RY, Brenner JS, et al. PECAM-1 directed re-targeting of exogenous mRNA offering two orders of magnitude enhancement of vascular supply and expression in lungs unbiased of apolipoprotein E-mediated uptake. J Managed Launch. 2018;291:106–15.
Li Q, Chan C, Peterson N, Hanna RN, Alfaro A, Allen KL, et al. Engineering caveolae-targeted lipid nanoparticles to ship mRNA to the lungs. ACS Chem Biol. 2020;15(4):830–6.
Qiu M, Tang Y, Chen J, Muriph R, Ye Z, Huang C, et al. Lung-selective mRNA supply of artificial lipid nanoparticles for the remedy of pulmonary lymphangioleiomyomatosis. Proc Natl Acad Sci. 2022;119(8): e2116271119.
Karim ME, Haque ST, Al-Busaidi H, Bakhtiar A, Tha KK, Holl MMB, Chowdhury EH. Scope and challenges of nanoparticle-based mRNA supply in most cancers remedy. Arch Pharmacal Res. 2022;45(12):865–93. https://doi.org/10.1007/s12272-022-01418-x.
Schoenmaker L, Witzigmann D, Kulkarni JA, Verbeke R, Kersten G, Jiskoot W, Crommelin DJA. mRNA-lipid nanoparticle COVID-19 vaccines: construction and stability. Int J Pharm. 2021;601: 120586. https://doi.org/10.1016/j.ijpharm.2021.120586.
Liu T, Tian Y, Zheng A, Cui C. Design methods for and stability of mRNA–lipid nanoparticle COVID-19 vaccines. Polymers. 2022. https://doi.org/10.3390/polym14194195.
Zelepukin IV, Yaremenko AV, Yuryev MV, Mirkasymov AB, Sokolov IL, Deyev SM, et al. Quick processes of nanoparticle blood clearance: complete research. J Managed Launch. 2020;326:181–91. https://doi.org/10.1016/j.jconrel.2020.07.014.
Huo S, Ma H, Huang Ok, Liu J, Wei T, Jin S, et al. Superior penetration and retention conduct of fifty nm gold nanoparticles in tumors. Can Res. 2013;73(1):319–30.
Zhao L, Seth A, Wibowo N, Zhao C-X, Mitter N, Yu C, Middelberg APJ. Nanoparticle vaccines. Vaccine. 2014;32(3):327–37.
Hassett KJ, Higgins J, Woods A, Levy B, Xia Y, Hsiao CJ, et al. Impression of lipid nanoparticle dimension on mRNA vaccine immunogenicity. J Managed Launch. 2021;335:237–46.
Okuda Ok, Sato Y, Iwakawa Ok, Sasaki Ok, Okabe N, Maeki M, et al. On the size-regulation of RNA-loaded lipid nanoparticles synthesized by microfluidic gadget. J Managed Launch. 2022;348:648–59. https://doi.org/10.1016/j.jconrel.2022.06.017.
Jia Y, Wang X, Li L, Li F, Zhang J, Liang X-J. Lipid nanoparticles optimized for concentrating on and launch of nucleic acid. Adv Mater. 2024;36(4):2305300. https://doi.org/10.1002/adma.202305300.
Aliakbarinodehi N, Gallud A, Mapar M, Wesén E, Heydari S, Jing Y, et al. Interplay kinetics of particular person mRNA-containing lipid nanoparticles with an endosomal membrane mimic: dependence on pH, protein corona formation, and lipoprotein depletion. ACS Nano. 2022;16(12):20163–73. https://doi.org/10.1021/acsnano.2c04829.
Ding F, Zhang H, Cui J, Li Q, Yang C. Boosting ionizable lipid nanoparticle-mediated in vivo mRNA supply by means of optimization of lipid amine-head teams. Biomater Sci. 2021;9(22):7534–46. https://doi.org/10.1039/D1BM00866H.
Yerneni SS, Azambuja JH, Lucas PC, McAllister-Lucas L, Whitehead KA. Summary 836: enabling mRNA drugs for mind tumors. Most cancers Res. 2023;83(7_Supplement):836–836. https://doi.org/10.1158/1538-7445.AM2023-836.
Naidu GS, Yong S-B, Ramishetti S, Rampado R, Sharma P, Ezra A, et al. A combinatorial library of lipid nanoparticles for cell type-specific mRNA supply. Adv Sci. 2023;10(19):2301929. https://doi.org/10.1002/advs.202301929.
Semple SC, Akinc A, Chen J, Sandhu AP, Mui BL, Cho CK, et al. Rational design of cationic lipids for siRNA supply. Nat Biotechnol. 2010;28(2):172–6.
Patel S, Ashwanikumar N, Robinson E, DuRoss A, Solar C, Murphy-Benenato KE, et al. Boosting intracellular supply of lipid nanoparticle-encapsulated mRNA. Nano Lett. 2017;17(9):5711–8. https://doi.org/10.1021/acs.nanolett.7b02664.
Patel S, Ashwanikumar N, Robinson E, Xia Y, Mihai C, Griffith JP, et al. Naturally-occurring ldl cholesterol analogues in lipid nanoparticles induce polymorphic form and improve intracellular supply of mRNA. Nat Commun. 2020;11(1):983. https://doi.org/10.1038/s41467-020-14527-2.
Liu S, Cheng Q, Wei T, Yu X, Johnson LT, Farbiak L, Siegwart DJ. Membrane-destabilizing ionizable phospholipids for organ-selective mRNA supply and CRISPR–Cas gene modifying. Nat Mater. 2021;20(5):701–10.
Hou X, Zaks T, Langer R, Dong Y. Lipid nanoparticles for mRNA supply. Nat Rev Mater. 2021;6(12):1078–94.
Zheng L, Bandara SR, Tan Z, Leal C. Lipid nanoparticle topology regulates endosomal escape and supply of RNA to the cytoplasm. Proc Natl Acad Sci. 2023;120(27): e2301067120. https://doi.org/10.1073/pnas.2301067120.
Paramasivam P, Franke C, Stöter M, Höijer A, Bartesaghi S, Sabirsh A, et al. Endosomal escape of delivered mRNA from endosomal recycling tubules visualized on the nanoscale. J Cell Biol. 2021;221(2): e202110137. https://doi.org/10.1083/jcb.202110137.
Yan Y, Liu X-Y, Lu A, Wang X-Y, Jiang L-X, Wang J-C. Non-viral vectors for RNA supply. J Managed Launch. 2022;342:241–79.
Herrera M, Kim J, Eygeris Y, Jozic A, Sahay G. Illuminating endosomal escape of polymorphic lipid nanoparticles that increase mRNA supply. Biomaterials Science. 2021;9(12):4289–300. https://doi.org/10.1039/D0BM01947J.
Clarke S, Geczy R, Balgi A, Park S, Zhao R, Swaminathan M, et al. Summary 1785: multi-step engineering of gene-edited CAR T cells utilizing RNA lipid nanoparticles. Most cancers Res. 2023;83(7):1785–1785. https://doi.org/10.1158/1538-7445.AM2023-1785.
Mabry R, Becker A, Wesselhoeft A, Horhata A. 44P In situ CAR remedy utilizing oRNA™ lipid nanoparticles regresses tumors in mice. Immuno-Oncol Technol. 2022. https://doi.org/10.1016/j.iotech.2022.100149.
Karmacharya P, Patil BR, Kim JO. Latest developments in lipid–mRNA nanoparticles as a remedy choice for most cancers immunotherapy. J Pharm Investig. 2022;52(4):415–26.