Moore, G. E. Cramming extra parts onto built-in circuits. Proc. IEEE 86, 82–85 (1998).
Moore, G. E. Progress in digital built-in electronics. In Technical Digest. Worldwide Electron Units Assembly (IEDM) 11–13 (IEEE, 1975). This text discusses the complexity of built-in circuits, identifies their manufacture, manufacturing and deployment and addresses developments to their future deployment.
Hu, C. Future CMOS scaling and reliability. Proc. IEEE 81, 682–689 (1993).
Packan, P. A. Pushing the boundaries. Science 285, 2079–2081 (1999).
Pop, E., Sinha, S. & Goodson, Ok. E. Warmth technology and transport in nanometer-scale transistors. Proc. IEEE 94, 1587–1601 (2006).
Yan, R.-H., Ourmazd, A. & Lee, Ok. F. Scaling the Si MOSFET: from bulk to SOI to bulk. IEEE Trans. Electron Units 39, 1704–1710 (1992).
Hisamoto, D. et al. FinFET—a self-aligned double-gate MOSFET scalable to twenty nm. IEEE Trans. Electron Units 47, 2320–2325 (2000).
Singh, N. et al. Excessive-performance absolutely depleted silicon nanowire (diameter ≤ 5 nm) gate-all-around CMOS units. IEEE Electron Machine Lett. 27, 383–386 (2006).
Ryckaert, J., et al. Enabling sub-5 nm CMOS know-how scaling thinner and taller! 2019 IEEE Worldwide Electron Units Assembly (IEDM) 29.4.1–29.4.4 (IEEE, 2019).
The Worldwide Know-how Roadmap for Semiconductors (ITRS) 2005 Version (SIA, 2005); https://www.semiconductors.org
Reggiani, S. et al. Low-field electron mobility mannequin for ultrathin-body SOI and double-gate MOSFETs with extraordinarily small silicon thicknesses. IEEE Trans. Electron Units 54, 2204–2212 (2007).
Worldwide Roadmap for Units and Programs (IRDS) 2022 Version (IEEE, 2022); https://irds.ieee.org/editions/2022
Lee, H.-H. S. & Chakrabarty, Ok. Check challenges for 3D built-in circuits. IEEE Des. Check. Comput. 26, 26–35 (2009).
Garrou, P., Bower, C. & Ramm, P. (eds) Handbook of 3D Integration, Quantity 1: Know-how and Purposes of 3D Built-in Circuits (Wiley, 2011).
Liu, C., et al. Two-dimensional supplies for next-generation computing applied sciences. Nat. Nanotechnol. 15, 545–557 (2020). That is an examination of the efficiency enchancment and machine innovation which can be impressed by 2D supplies.
Liu, H., Neal, A. T. & Ye, P. D. Channel size scaling of MoS2 MOSFETs. ACS Nano 6, 8563–8569 (2012).
Shim, J. et al. Managed crack propagation for atomic precision dealing with of wafer-scale two-dimensional supplies. Science 362, 665–670 (2018). This text stories that monolayers of quite a lot of 2D supplies may be cleaved from multilayers grown as 5-cm-diameter wafers.
Yu, H. et al. Wafer-scale progress and switch of highly-oriented monolayer MoS2 steady movies. ACS Nano 11, 12001–12007 (2017).
Lin, Y.-C. et al. Wafer-scale MoS2 skinny layers ready by MoO3 sulfurization. Nanoscale 4, 6637–6641 (2012).
Kong, W. et al. Path in direction of graphene commercialization from lab to market. Nat. Nanotechnol. 14, 927–938 (2019). This text appears to be like again on the previous decade and offers an outline of the event historical past of graphene, business alternatives and the latest progress of graphene commercialization.
Kang, Ok. et al. Excessive-mobility three-atom-thick semiconducting movies with wafer-scale homogeneity. Nature 520, 656–660 (2015). This text stories the preparation of high-mobility monolayer MoS2 and WS2 grown on 4 in. wafers with glorious spatial homogeneity over all the movies.
Li, T. et al. Epitaxial progress of wafer-scale molybdenum disulfide semiconductor single crystals on sapphire. Nat. Nanotechnol. 16, 1201–1207 (2021). This text demonstrates the epitaxial progress of monolayer MoS2 single crystals on a C-plane sapphire.
Liu, L. et al. Uniform nucleation and epitaxy of bilayer molybdenum disulfide on sapphire. Nature 605, 69–75 (2022).
Li, J. et al. Basic synthesis of two-dimensional van der Waals heterostructure arrays. Nature 579, 368–374 (2020).
Zhang, Z. et al. Endoepitaxial progress of monolayer mosaic heterostructures. Nat. Nanotechnol. 17, 493–499 (2022).
Kim, Ok. S. et al. Non-epitaxial single-crystal 2D materials progress by geometric confinement. Nature 614, 88–94 (2023). This text stories a non-epitaxial technique to develop single-domain TMDs on amorphous oxides, thus enabling direct progress of single-crystalline 2D supplies on an Si wafer coated with an oxide layer.
Xiong, X., et al. Demonstration of vertically-stacked CVD monolayer channels: MoS2 nanosheets GAA-FET with Ion > 700 µA/µm and MoS2/WSe2 CFET. In 2021 IEEE Worldwide Electron Units Assembly (IEDM) 7.5.1–7.5.4 (IEEE, 2021).
O’Brien, Ok. P. et al. Course of integration and future outlook of 2D transistors. Nat. Commun. 14, 6400 (2023).
Chung, Y.-Y. et al. First demonstration of GAA monolayer–MoS2 nanosheet nFET with 410 μA μm ID 1 V VD at 40 nm gate size. 2022 Worldwide Electron Units Assembly (IEDM) 34–35 (IEEE, 2022).
Loi, F. et al. Development mechanism and thermal stability of a MoS2–graphene interface: a high-resolution core-level photoelectron spectroscopy research. J. Phys. Chem. C 124, 20889–20897 (2020).
Pandey, A. et al. Structural and optical properties of bulk MoS2 for 2D layer progress. Adv. Mater. Lett. 7, 777–782 (2016).
Jiang, Y. et al. Bodily adsorption and oxidation of ultrathin MoS2 crystals: insights into floor engineering for 2D electronics and past. Nanotechnology 34, 405701 (2023).
Jiang, J. et al. Ballistic two-dimensional InSe transistors. Nature 616, 470–475 (2023).
Boby, S. M. & Islam, R. MoS2 primarily based TFET: research on channel thickness dependent efficiency. In 2018 4th Worldwide Convention on Electrical Engineering and Data & Communication Know-how (iCEEiCT) 449–453 (IEEE, 2018).
Shen, P.-C. et al. Ultralow contact resistance between semimetal and monolayer semiconductors. Nature 593, 211–217 (2021).
Li, W. et al. Approaching the quantum restrict in two-dimensional semiconductor contacts. Nature 613, 274–279 (2023).
Wang, Y. et al. P-type electrical contacts for 2D transition-metal dichalcogenides. Nature 610, 61–66 (2022).
Liu, Y. et al. Approaching the Schottky–Mott restrict in van der Waals metallic–semiconductor junctions. Nature 557, 696–700 (2018).
Wang, Y. et al. Van der Waals contacts between three-dimensional metals and two-dimensional semiconductors. Nature 568, 70–74 (2019).
Wang, L. et al. One-dimensional electrical contact to a two-dimensional materials. Science 342, 614–617 (2013).
Moon, B. H. et al. Junction-structure-dependent Schottky barrier inhomogeneity and machine ideality of monolayer MoS2 field-effect transistors. ACS Appl. Mater. Interfaces 9, 11240–11246 (2017).
Music, S. et al. Atomic transistors primarily based on seamless lateral metallic–semiconductor junctions with a sub-1-nm switch size. Nat. Commun. 13, 4916 (2022).
Kim, H. G. & Lee, H.-B.-R. Atomic layer deposition on 2D supplies. Chem. Mater. 29, 3809–3826 (2017).
Liu, Y. et al. Guarantees and prospects of two-dimensional transistors. Nature 591, 43–53 (2021).
English, C. D. et al. Improved contacts to MoS2 transistors by ultra-high vacuum metallic deposition. Nano Lett. 16, 3824–3830 (2016).
Gao, L. et al. Silicon-processes-compatible contact engineering for two-dimensional supplies built-in circuits. Nano Res. 16, 12471–12490 (2023).
Chou, A.-S. et al. Antimony semimetal contact with enhanced thermal stability for prime efficiency 2D electronics. In 2021 IEEE Worldwide Electron Units Assembly (IEDM) 7.2.1–7.2.4 (IEEE, 2021).
Gu, M. et al. Hybrid low‐okay spacer scheme for superior FinFET know-how parasitic capacitance discount. Electron. Lett. 56, 514–516 (2020).
Lee, D. et al. Recessed-channel WSe2 field-effect transistor by way of self-terminated doping and layer-by-layer etching. ACS Nano 16, 8484–8492 (2022).
Kato, R. et al. p-type conversion of WS2 and WSe2 by position-selective oxidation doping and its software in high gate transistors. ACS Appl. Mater. Interfaces 15, 26977–26984 (2023).
Bolshakov, P. et al. Contact engineering for dual-gate MoS2 transistors utilizing O2 plasma publicity. ACS Appl. Electron. Mater. 1, 210–219 (2019).
Zhao, P. et al. Probing interface defects in top-gated MoS2 transistors with impedance spectroscopy. ACS Appl. Mater. Interfaces 9, 24348–24356 (2017).
Yang, W. et al. The combination of sub-10 nm gate oxide on MoS2 with extremely low leakage and enhanced mobility. Sci. Rep. 5, 11921 (2015).
Zou, X. et al. Interface engineering for prime‐efficiency high‐gated MoS2 subject‐impact transistors. Adv. Mater. 26, 6255–6261 (2014).
Kim, H. et al. Ultrathin monolithic HfO2 shaped by Hf-seeded atomic layer deposition on MoS2: movie traits and its transistor software. Skinny Stable Movies 673, 112–118 (2019).
Dorow, C. et al. Advancing monolayer 2-D nMOS and pMOS transistor integration from progress to van der Waals interface engineering for final CMOS scaling. IEEE Trans. Electron Units 68, 6592–6598 (2021).
Wang, X., Scott, M. T. & Dai, H. Atomic layer deposition of metallic oxides on pristine and functionalized graphene. J. Am. Chem. Soc. 130, 8152–8153 (2008).
Li, W. et al. Uniform and ultrathin high-κ gate dielectrics for two-dimensional digital units. Nat. Electron. 2, 563–571 (2019).
Xu, Y. et al. Scalable integration of hybrid high-κ dielectric supplies on two-dimensional semiconductors. Nat. Mater. 22, 1078–1084 (2023).
Park, Y. H. et al. Enhanced nucleation of high-okay dielectrics on graphene by atomic layer deposition. Chem. Mater. 28, 7268–7275 (2016).
Fisichella, G. et al. Interface electrical properties of Al2O3 skinny movies on graphene obtained by atomic layer deposition with an in situ seedlike layer. ACS Appl. Mater. Interfaces 9, 7761–7771 (2017).
Lin, Y.-S. et al. Atomic layer deposition of sub-10 nm high-Ok gate dielectrics on top-gated MoS2 transistors with out floor functionalization. Appl. Surf. Sci. 443, 421–428 (2018).
Lin, D., et al. Twin gate artificial WS2 MOSFETs with 120 μS/μm Gm 2.7 μF/cm2 capacitance and ambipolar channel. In 2020 IEEE Worldwide Electron Units Assembly (IEDM) 3.6.1–3.6.4 (IEEE, 2020).
Wu, X., et al. Twin gate artificial MoS2 MOSFETs with 4.56 µF/cm2 channel capacitance, 320 µS/µm Gm and 420 µA/µm Id at 1 V Vd/100 nm Lg. In 2021 IEEE Worldwide Electron Units Assembly (IEDM) 7.4.1–7.4.4 (IEEE, 2021).
Liu, Ok. et al. A wafer-scale van der Waals dielectric constructed from an inorganic molecular crystal movie. Nat. Electron. 4, 906–913 (2021).
Lai, S. et al. HfO2/HfS2 hybrid heterostructure fabricated by way of controllable chemical conversion of two-dimensional HfS2. Nanoscale 10, 18758–18766 (2018).
Zhang, Y. et al. A single-crystalline native dielectric for two-dimensional semiconductors with an equal oxide thickness beneath 0.5 nm. Nat. Electron. 5, 643–649 (2022).
Yang, A. J. et al. Van der Waals integration of high-κ perovskite oxides and two-dimensional semiconductors. Nat. Electron. 5, 233–240 (2022).
Lu, Z. et al. Wafer-scale high-κ dielectrics for two-dimensional circuits by way of van der Waals integration. Nat. Commun. 14, 2340 (2023).
Britnell, L. et al. Electron tunneling via ultrathin boron nitride crystalline obstacles. Nano Lett. 12, 1707–1710 (2012).
Knobloch, T. et al. The efficiency limits of hexagonal boron nitride as an insulator for scaled CMOS units primarily based on two-dimensional supplies. Nat. Electron. 4, 98–108 (2021).
Fleetwood, D. M. et al. Results of oxide traps, interface traps, and ‘border traps’ on metallic–oxide–semiconductor units. J. Appl. Phys. 73, 5058–5074 (1993).
Zhao, P. et al. Analysis of border traps and interface traps in HfO2/MoS2 gate stacks by capacitance–voltage evaluation. 2D Mater. 5, 031002 (2018).
Illarionov, Y. Y. et al. Energetic mapping of oxide traps in MoS2 field-effect transistors. 2D Mater. 4, 025108 (2017).
Knobloch, T. et al. Enhancing stability in two-dimensional transistors with amorphous gate oxides by Fermi-level tuning. Nat. Electron. 5, 356–366 (2022).
O’Brien, Ok. P., et al. Advancing 2D monolayer CMOS via contact, channel and interface engineering. In 2021 IEEE Worldwide Electron Units Assembly (IEDM) 7.1.1–7.1.4 (IEEE, 2021).
Smets, Q., et al. Scaling of double-gated WS2 FETs to sub-5 nm bodily gate size fabricated in a 300 mm FAB. In 2021 IEEE Worldwide Electron Units Assembly (IEDM) 34.2.1–34.2.4 (IEEE, 2021).
Schram, T., et al. Excessive yield and course of uniformity for 300 mm built-in WS2 FETs. In 2021 Symposium on VLSI Know-how 1–2 (IEEE, 2021).
Hung, T. Y. T., et al. Pinning-free edge contact monolayer MoS2 FET. In 2020 IEEE Worldwide Electron Units Assembly (IEDM) 3.3.1–3.3.4 (IEEE, 2020).
Nguyen, V. L. et al. Wafer-scale integration of transition metallic dichalcogenide field-effect transistors utilizing adhesion lithography. Nat. Electron. 6, 146–153 (2023).
Sohn, A. et al. Exact layer management and digital state modulation of a transition metallic dichalcogenide by way of section‐transition‐induced progress. Adv. Mater. 34, 2103286 (2022).
Seol, M. et al. Excessive‐throughput progress of wafer‐scale monolayer transition metallic dichalcogenide by way of vertical Ostwald ripening. Adv. Mater. 32, 2003542 (2020). This text stories high-throughput progress of wafer-scale monolayer MoS2 and WS2.
Jang, H. et al. An atomically skinny optoelectronic machine imaginative and prescient processor. Adv. Mater. 32, 2002431 (2020).
Gao, C. et al. Defect evolution behaviors from single sulfur level vacancies to line vacancies in monolayer molybdenum disulfide. Phys. Chem. Chem. Phys. 23, 19525–19536 (2021).
Mignuzzi, S. et al. Impact of dysfunction on Raman scattering of single-layer MoS2. Phys. Rev. B 91, 195411 (2015).
Chow, P. Ok. et al. Defect-induced photoluminescence in monolayer semiconducting transition metallic dichalcogenides. ACS Nano 9, 1520–1527 (2015).
Ermolaev, G. A. et al. Broadband optical properties of monolayer and bulk MoS2. npj 2D Mater. Appl. 4, 21 (2020).
Syari’ati, A. et al. Photoemission spectroscopy research of structural defects in molybdenum disulfide (MoS2) grown by chemical vapor deposition (CVD). Chem. Commun. 55, 10384–10387 (2019).
Ma, N. & Jena, D. Cost scattering and mobility in atomically skinny semiconductors. Phys. Rev. 4, 011043 (2014).
Yalon, E. et al. Power dissipation in monolayer MoS2 electronics. Nano Lett. 17, 3429–3433 (2017).
Noel, J.-P. et al. Multi-VT UTBB FDSOI machine architectures for low-power CMOS circuit. IEEE Trans. Electron Units 58, 2473–2482 (2011).
Yoon, J.-S. et al. Multi-Vth methods of 7-nm node nanosheet FETs with restricted nanosheet spacing. IEEE J. Electron Units Soc. 6, 861–865 (2018).
Schwierz, F. & Liou, J. J. Standing and future prospects of CMOS scaling and Moore’s regulation—a private perspective. In 2020 IEEE Latin America Electron Units Convention (LAEDC) 1–4 (IEEE, 2020).
Radisavljevic, B. et al. Single-layer MoS2 transistors. Nat. Nanotechnol. 6, 147–150 (2011). This text stories a realization of a field-effect transistor with a single, two-dimensional layer of the semiconductor MoS2.
Zhan, Y. et al. Giant‐space vapor‐section progress and characterization of MoS2 atomic layers on a SiO2 substrate. Small 8, 966–971 (2012).
Han, G. H. et al. Seeded progress of extremely crystalline molybdenum disulphide monolayers at managed places. Nat. Commun. 6, 6128 (2015).
Wang, P. et al. Arrayed van der Waals broadband detectors for twin‐band detection. Adv. Mater. 29, 1604439 (2017).
Li, Y. et al. Web site-specific positioning and patterning of MoS2 monolayers: the function of Au seeding. ACS Nano 12, 8970–8976 (2018).
Zhu, J. et al. Low-thermal-budget synthesis of monolayer molybdenum disulfide for silicon back-end-of-line integration on a 200 mm platform. Nat. Nanotechnol. 18, 456–463 (2023).
Fang, H. et al. Excessive-performance single layered WSe2 p-FETs with chemically doped contacts. Nano Lett. 12, 3788–3792 (2012).
Kappera, R. et al. Part-engineered low-resistance contacts for ultrathin MoS2 transistors. Nat. Mater. 13, 1128–1134 (2014).
Azcatl, A. et al. MoS2 functionalization for ultrathin atomic layer deposited dielectrics. Appl. Phys. Lett. 104, 111601 (2014).
Cheng, L. et al. Atomic layer deposition of a high-okay dielectric on MoS2 utilizing trimethylaluminum and ozone. ACS Appl. Mater. Interfaces 6, 11834–11838 (2014).
Wang, H. et al. Built-in circuits primarily based on bilayer MoS2 transistors. Nano Lett. 12, 4674–4680 (2012).
Chen, M.-C., et al. TMD FinFET with 4 nm skinny physique and again gate management for future low energy know-how. In 2015 IEEE Worldwide Electron Units Assembly (IEDM) 32.2.1–32.2.4 (IEEE, 2015).
Wachter, S. et al. A microprocessor primarily based on a two-dimensional semiconductor. Nat. Commun. 8, 14948 (2017).
Huang, X., et al. Excessive drive and low leakage present MBC FET with channel thickness 1.2 nm/0.6 nm. 2020 IEEE Worldwide Electron Units Assembly (IEDM) 12.1.1–12.1.4 (IEEE, 2020).
Xiong, X., et al. Prime-gate CVD WSe2 pFETs with record-high Id ~ 594 μA/μm, Gm ~ 244 μS/μm and WSe2/MoS2 CFET primarily based half-adder circuit utilizing monolithic 3D integration. In 2022 Worldwide Electron Units Assembly (IEDM) 20–26 (IEEE, 2022).
Choi, M. S. et al. Latest progress in 1D contacts for 2D‐materials‐primarily based units. Adv. Mater. 34, 2202408 (2022).
Smithe, Ok. Ok. H., Suryavanshi, S. V., Munoz Rojo, M., Tedjarati, A. D. & Pop, E. Low variability in artificial monolayer MoS2 units. ACS Nano 11, 8456–8463 (2017).
Chou, A. S. et al. Excessive on-state present in chemical vapor deposited monolayer MoS2 nFETs with Sn ohmic contacts. IEEE Electron Machine Lett. 42, 272–275 (2021).
Yang, L. et al. Chloride molecular doping method on 2D supplies: WS2 and MoS2. Nano Lett. 14, 6275–6280 (2014).
McClellan, J. et al. Excessive present density in monolayer MoS2 doped by AlOx. ACS Nano 15, 1587–1596 (2021).
Cheng, Z. et al. Immunity to contact scaling in MoS2 transistors utilizing in situ edge contacts. Nano Lett. 19, 5077–5085 (2019).
Xiao, J. et al. Document-high saturation present in end-bond contacted monolayer MoS2 transistors. Nano Res. 15, 475–481 (2022).
Guimaraes, M. H. D. et al. Atomically skinny ohmic edge contacts between two-dimensional supplies. ACS Nano 10, 6392–6399 (2016).