Wednesday, September 10, 2025
HomeNanotechnologyUnderstanding epitaxial development of two-dimensional supplies and their homostructures

Understanding epitaxial development of two-dimensional supplies and their homostructures


  • Mounet, N. et al. Two-dimensional supplies from high-throughput computational exfoliation of experimentally recognized compounds. Nat. Nanotechnol. 13, 246–252 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Could, J. W. Platinum floor LEED rings. Surf. Sci. 17, 267–270 (1969).

    Article 
    CAS 

    Google Scholar
     

  • Koma, A., Sunouchi, Ok. & Miyajima, T. Fabrication and characterization of heterostructures with subnanometer thickness. Microelectron. Eng. 2, 129–136 (1984).

    Article 
    CAS 

    Google Scholar
     

  • Li, X. et al. Giant-area synthesis of high-quality and uniform graphene movies on copper foils. Science 324, 1312–1314 (2009). This research synthesizes centimetre-scale high-quality graphene movies on Cu substrates through CVD utilizing methane.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bae, S. et al. Roll-to-roll manufacturing of 30-inch graphene movies for clear electrodes. Nat. Nanotechnol. 5, 574–578 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Xu, X. Z. et al. Ultrafast epitaxial development of metre-sized single-crystal graphene on industrial Cu foil. Sci. Bull. 62, 1074–1080 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Wang, L. et al. Epitaxial development of a 100-square-centimetre single-crystal hexagonal boron nitride monolayer on copper. Nature 570, 91–95 (2019). This research demonstrates the expansion of decimetre-scale single-crystal hBN monolayers through a step-edge-guided unidirectional nucleation.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Liu, C., Wang, L., Qi, J. & Liu, Ok. Designed development of large-size 2D single crystals. Adv. Mater. 32, 2000046 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Li, T. T. et al. Epitaxial development of wafer-scale molybdenum disulfide semiconductor single crystals on sapphire. Nat. Nanotechnol. 16, 1201–1207 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Xu, X. et al. Seeded 2D epitaxy of large-area single-crystal movies of the van der Waals semiconductor 2H MoTe2. Science 372, 195–200 (2021). This work studies a seeded epitaxy of wafer-scale single-crystal 2H-MoTe2 that triggered from an implanted 2H-MoTe2 single seed crystal.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Liao, M. Z. et al. Exact management of the interlayer twist angle in giant scale MoS2 homostructures. Nat. Commun. 11, 2153 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu, C. et al. Designed development of enormous bilayer graphene with arbitrary twist angles. Nat. Mater. 21, 1263–1268 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Du, L. et al. Moiré photonics and optoelectronics. Science 379, eadg0014 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang, L. et al. Bevel-edge epitaxy of ferroelectric rhombohedral boron nitride single crystal. Nature 629, 74–79 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wu, R. et al. Giant-area single-crystal sheets of borophene on Cu(111) surfaces. Nat. Nanotechnol. 14, 44–49 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Chen, C. et al. Development of single-crystal black phosphorus and its alloy movies by way of sustained feedstock launch. Nat. Mater. 22, 717–724 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhou, Z. et al. Low symmetric sub-wavelength array enhanced lensless polarization-sensitivity photodetector of germanium selenium. Sci. Bull. 68, 173–179 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Lin, Y.-C. et al. Current advances in 2D materials idea, synthesis, properties, and purposes. ACS Nano 17, 9694–9747 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Braeuninger-Weimer, P., Brennan, B., Pollard, A. J. & Hofmann, S. Understanding and controlling Cu-catalyzed graphene nucleation: the function of impurities, roughness, and oxygen scavenging. Chem. Mater. 28, 8905–8915 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yan, Z. et al. Towards the synthesis of wafer-scale single-crystal graphene on copper foils. ACS Nano 6, 9110–9117 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sridhara, Ok. et al. Electrochemically ready polycrystalline copper floor for the expansion of hexagonal boron nitride. Cryst. Development Des. 17, 1669–1678 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Wang, H. et al. Controllable synthesis of submillimeter single-crystal monolayer graphene domains on copper foils by suppressing nucleation. J. Am. Chem. Soc. 134, 3627–3630 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang, L. et al. Monolayer hexagonal boron nitride movies with giant area measurement and clear interface for enhancing the mobility of graphene-based field-effect transistors. Adv. Mater. 26, 1559–1564 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li, X. et al. Giant-area graphene single crystals grown by low-pressure chemical vapor deposition of methane on copper. J. Am. Chem. Soc. 133, 2816–2819 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ji, Y. et al. Chemical vapor deposition development of enormous single-crystal mono-, bi-, tri-layer hexagonal boron nitride and their interlayer stacking. ACS Nano 11, 12057–12066 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chen, J. et al. Chemical vapor deposition of large-size monolayer MoSe2 crystals on molten glass. J. Am. Chem. Soc. 139, 1073–1076 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lee, J. S. et al. Wafer-scale single-crystal hexagonal boron nitride movie through self-collimated grain formation. Science 362, 817–821 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hao, Y. et al. The function of floor oxygen within the development of enormous single-crystal graphene on copper. Science 342, 720–723 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lin, L. et al. Floor engineering of copper foils for rising centimeter-sized single-crystalline graphene. ACS Nano 10, 2922–2929 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang, H. et al. Major nucleation-dominated chemical vapor deposition development for uniform graphene monolayers on dielectric substrate. J. Am. Chem. Soc. 141, 11004–11008 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ma, T. et al. Repeated development–etching–regrowth for large-area defect-free single-crystal graphene by chemical vapor deposition. ACS Nano 8, 12806–12813 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang, L. et al. Water-assisted development of large-sized single crystal hexagonal boron nitride grains. Mater. Chem. Entrance. 1, 1836–1840 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Chen, W. et al. Oxygen-assisted chemical vapor deposition development of enormous single-crystal and high-quality monolayer MoS2. J. Am. Chem. Soc. 137, 15632–15635 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gong, Y. et al. Synthesis of millimeter-scale transition metallic dichalcogenides single crystals. Adv. Funct. Mater. 26, 2009–2015 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Lim, Y.-F. et al. Modification of vapor section concentrations in MoS2 development utilizing a NiO foam barrier. ACS Nano 12, 1339–1349 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Suzuki, H. et al. Floor diffusion-limited development of enormous and high-quality monolayer transition metallic dichalcogenides in confined house of microreactor. ACS Nano 16, 11360–11373 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chang, M.-C. et al. Quick development of large-grain and steady MoS2 movies by way of a self-capping vapor–liquid–strong methodology. Nat. Commun. 11, 3682 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wu, T. R. et al. Quick development of inch-sized single-crystalline graphene from a managed single nucleus on Cu–Ni alloys. Nat. Mater. 15, 43–47 (2016). This work presents a neighborhood feeding approach to regulate the nucleation of a single graphene nucleus, enabling the evolution into an inch-sized single-crystal area.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Vlassiouk, I. V. et al. Evolutionary choice development of two-dimensional supplies on polycrystalline substrates. Nat. Mater. 17, 318–322 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Xing, S., Wu, W., Wang, Y., Bao, J. & Pei, S.-S. Kinetic research of graphene development: temperature perspective on development fee and movie thickness by chemical vapor deposition. Chem. Phys. Lett. 580, 62–66 (2013).

    Article 
    CAS 

    Google Scholar
     

  • Liu, C. et al. Kinetic modulation of graphene development by fluorine by way of spatially confined decomposition of metallic fluorides. Nat. Chem. 11, 730–736 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Huang, P. Y. et al. Grains and grain boundaries in single-layer graphene atomic patchwork quilts. Nature 469, 389–392 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gao, L., Visitor, J. R. & Guisinger, N. P. Epitaxial graphene on Cu(111). Nano Lett. 10, 3512–3516 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Murdock, A. T. et al. Controlling the orientation, edge geometry, and thickness of chemical vapor deposition graphene. ACS Nano 7, 1351–1359 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Nguyen, V. L. et al. Seamless stitching of graphene domains on polished copper (111) foil. Adv. Mater. 27, 1376–1382 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lee, J. H. et al. Wafer-scale development of single-crystal monolayer graphene on reusable hydrogen-terminated germanium. Science 344, 286–289 (2014). This research demonstrates wafer-scale single-crystal graphene grown on H–Ge(110) by way of seamless merging of a number of unidirectionally aligned domains.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Jin, S. et al. Colossal grain development yields single-crystal metallic foils by contact-free annealing. Science 362, 1021–1025 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Nguyen, V. L. et al. Wafer-scale single-crystalline AB-stacked bilayer graphene. Adv. Mater. 28, 8177–8183 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Deng, B. et al. Wrinkle-free single-crystal graphene wafer grown on strain-engineered substrates. ACS Nano 11, 12337–12345 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tune, X. J. et al. Chemical vapor deposition development of large-scale hexagonal boron nitride with controllable orientation. Nano Res. 8, 3164–3176 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Yu, H. et al. Wafer-scale development and switch of highly-oriented monolayer MoS2 steady movies. ACS Nano 11, 12001–12007 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li, J. D. et al. Development of polar hexagonal boron nitride monolayer on nonpolar copper with distinctive orientation. Small 12, 3645–3650 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cuccureddu, F. et al. Floor morphology of c-plane sapphire (α-alumina) produced by excessive temperature anneal. Surf. Sci. 604, 1294–1299 (2010).

    Article 
    CAS 

    Google Scholar
     

  • Fu, J.-H. et al. Oriented lateral development of two-dimensional supplies on c-plane sapphire. Nat. Nanotechnol. 18, 1289–1294 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chen, T. A. et al. Wafer-scale single-crystal hexagonal boron nitride monolayers on Cu(111). Nature 579, 219–223 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yang, P. F. et al. Epitaxial development of centimeter-scale single-crystal MoS2 monolayer on Au(111). ACS Nano 14, 5036–5045 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang, J. H. et al. Twin-coupling-guided epitaxial development of wafer-scale single-crystal WS2 monolayer on vicinal a-plane sapphire. Nat. Nanotechnol. 17, 33–38 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yang, P. et al. Extremely reproducible epitaxial development of wafer-scale single-crystal monolayer MoS2 on sapphire. Small Strategies 7, 2300165 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Zhou, X. et al. Step-climbing epitaxy of layered supplies with big out-of-plane lattice mismatch. Adv. Mater. 34, 2202754 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Arias, P., Ebnonnasir, A., Ciobanu, C. V. & Kodambaka, S. Development kinetics of two-dimensional hexagonal boron nitride layers on Pd(111). Nano Lett. 20, 2886–2891 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zheng, P. et al. Common epitaxy of non-centrosymmetric two-dimensional single-crystal metallic dichalcogenides. Nat. Commun. 14, 592 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhu, H. et al. Step engineering for nucleation and area orientation management in WSe2 epitaxy on c-plane sapphire. Nat. Nanotechnol. 18, 1295–1302 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Xu, X. et al. Development of 2D supplies on the wafer scale. Adv. Mater. 34, 2108258 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Cai, Z., Liu, B., Zou, X. & Cheng, H.-M. Chemical vapor deposition development and purposes of two-dimensional supplies and their heterostructures. Chem. Rev. 118, 6091–6133 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang, M. et al. Single-crystal, large-area, fold-free monolayer graphene. Nature 596, 519–524 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang, L. et al. One-dimensional electrical contact to a two-dimensional materials. Science 342, 614–617 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hong, J. et al. Exploring atomic defects in molybdenum disulphide monolayers. Nat. Commun. 6, 6293 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Vancsó, P. et al. The intrinsic defect construction of exfoliated MoS2 single layers revealed by scanning tunneling microscopy. Sci. Rep. 6, 29726 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang, S., Robertson, A. & Warner, J. H. Atomic construction of defects and dopants in 2D layered transition metallic dichalcogenides. Chem. Soc. Rev. 47, 6764–6794 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ding, S., Lin, F. & Jin, C. Quantify level defects in monolayer tungsten diselenide. Nanotechnology 32, 255701 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Choi, S. H. et al. Is chemical vapor deposition of monolayer WSe2 corresponding to different artificial routes? APL Mater. 11, 111124 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Feng, S. et al. Synthesis of ultrahigh-quality monolayer molybdenum disulfide by way of in situ defect therapeutic with thiol molecules. Small 16, 2003357 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Wan, Y. et al. Low-defect-density WS2 by hydroxide vapor section deposition. Nat. Commun. 13, 4149 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zuo, Y. G. et al. Strong development of two-dimensional metallic dichalcogenides and their alloys by energetic chalcogen monomer provide. Nat. Commun. 13, 1007 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xue, G. et al. Modularized batch manufacturing of 12-inch transition metallic dichalcogenides by native component provide. Sci. Bull. 68, 1514–1521 (2023). This work develops a modularized local-element-supply technique, reaching batch manufacturing of TMDC wafers as much as 12 inches.

    Article 
    CAS 

    Google Scholar
     

  • Shen, Y. et al. In situ restore of 2D chalcogenides underneath electron beam irradiation. Adv. Mater. 30, 1705954 (2018).

    Article 

    Google Scholar
     

  • Xu, X. et al. Atomic-precision restore of a few-layer 2H-MoTe2 skinny movie by section transition and recrystallization induced by a heterophase interface. Adv. Mater. 32, 2000236 (2020).

    Article 
    CAS 

    Google Scholar
     

  • López, V. et al. Chemical vapor deposition restore of graphene oxide: a path to highly-conductive graphene monolayers. Adv. Mater. 21, 4683–4686 (2009).

    Article 

    Google Scholar
     

  • Yu, Z. et al. In the direction of intrinsic cost transport in monolayer molybdenum disulfide by defect and interface engineering. Nat. Commun. 5, 5290 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lin, Y.-C. et al. Realizing large-scale, electronic-grade two-dimensional semiconductors. ACS Nano 12, 965–975 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gurlu, O. et al. Managed damaging and restore of self-organized nanostructures by atom manipulation at room temperature. Nanotechnology 18, 365305 (2007).

    Article 

    Google Scholar
     

  • Chae, S. J. et al. Synthesis of large-area graphene layers on poly-nickel substrate by chemical vapor deposition: wrinkle formation. Adv. Mater. 21, 2328–2333 (2009).

    Article 
    CAS 

    Google Scholar
     

  • Zhu, W. et al. Construction and digital transport in graphene wrinkles. Nano Lett. 12, 3431–3436 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gao, L. B. et al. Face-to-face switch of wafer-scale graphene movies. Nature 505, 190–194 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yuan, G. et al. Proton-assisted development of ultraflat graphene movies. Nature 577, 204–208 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Das, S. et al. Transistors primarily based on two-dimensional supplies for future built-in circuits. Nat. Electron. 4, 786–799 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Zhou, H. L. et al. Chemical vapour deposition development of enormous single crystals of monolayer and bilayer graphene. Nat. Commun. 4, 2096 (2013).

    Article 
    PubMed 

    Google Scholar
     

  • Solar, Z. Z. et al. Development of graphene from strong carbon sources. Nature 468, 549–552 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wassei, J. Ok. et al. Chemical vapor deposition of graphene on copper from methane, ethane and propane: proof for bilayer selectivity. Small 8, 1415–1422 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yan, Ok., Peng, H. L., Zhou, Y., Li, H. & Liu, Z. F. Formation of bilayer Bernal graphene: layer-by-layer epitaxy through chemical vapor deposition. Nano Lett. 11, 1106–1110 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang, Z. et al. Layer-by-layer development of bilayer graphene single-crystals enabled by self-transmitting catalytic exercise. Preprint at https://arxiv.org/abs/2205.01468 (2022).

  • Zhao, M. et al. Enhanced copper anticorrosion from Janus-doped bilayer graphene. Nat. Commun. 14, 7447 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lee, S., Lee, Ok. & Zhong, Z. H. Wafer scale homogeneous bilayer graphene movies by chemical vapor deposition. Nano Lett. 10, 4702–4707 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li, Q. Y. et al. Development of adlayer graphene on Cu studied by carbon isotope labeling. Nano Lett. 13, 486–490 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang, X. Y., Wang, L., Xin, J., Yakobson, B. I. & Ding, F. Function of hydrogen in graphene chemical vapor deposition development on a copper floor. J. Am. Chem. Soc. 136, 3040–3047 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kidambi, P. R. et al. In situ observations throughout chemical vapor deposition of hexagonal boron nitride on polycrystalline copper. Chem. Mater. 26, 6380–6392 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu, L. et al. Uniform nucleation and epitaxy of bilayer molybdenum disulfide on sapphire. Nature 605, 69–75 (2002). This research studies the synthesis of centimetre-scale MoS2 bilayers by engineering the atomic terrace peak on c-plane sapphire to allow an edge-nucleation mechanism.

    Article 

    Google Scholar
     

  • Ma, Ok. Y. et al. Epitaxial single-crystal hexagonal boron nitride multilayers on Ni(111). Nature 606, 88–93 (2022). This research presents the edge-aligned nucleation of trilayer hBN domains on stepped Ni(111) surfaces, realizing the epitaxial development of wafer-scale single-crystal hBN trilayers.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ma, W. et al. Interlayer epitaxy of wafer-scale high-quality uniform AB-stacked bilayer graphene movies on liquid Pt3Si/strong Pt. Nat. Commun. 10, 2809 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Reina, A. et al. Development of large-area single- and bi-layer graphene by managed carbon precipitation on polycrystalline Ni surfaces. Nano Res. 2, 509–516 (2009).

    Article 
    CAS 

    Google Scholar
     

  • Sutter, P. W., Flege, J. I. & Sutter, E. A. Epitaxial graphene on ruthenium. Nat. Mater. 7, 406–411 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Takesaki, Y. et al. Extremely uniform bilayer graphene on epitaxial Cu–Ni(111) alloy. Chem. Mater. 28, 4583–4592 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Huang, M. et al. Giant-area single-crystal AB-bilayer and ABA-trilayer graphene grown on a Cu/Ni(111) foil. Nat. Nanotechnol. 15, 289–295 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Nguyen, V. L. et al. Layer-controlled single-crystalline graphene movie with stacking order through Cu–Si alloy formation. Nat. Nanotechnol. 15, 861–867 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang, L., Dong, J. & Ding, F. Methods, standing, and challenges in wafer scale single crystalline two-dimensional supplies synthesis. Chem. Rev. 121, 6321–6372 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Qiu, W. et al. Thickness-controlled development of multilayer graphene on Ni(111) utilizing an approximate equilibrium segregation methodology for purposes in spintronic units. ACS Appl. Nano Mater. 6, 4236–4242 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Shi, Z. Y. et al. Vapor–liquid–strong development of large-area multilayer hexagonal boron nitride on dielectric substrates. Nat. Commun. 11, 849 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li, Y. F. et al. Synthesis of centimeter-scale high-quality polycrystalline hexagonal boron nitride movies from Fe fluxes. Nanoscale 13, 11223–11231 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang, Z. B. et al. Steady epitaxy of single-crystal graphite movies by isothermal carbon diffusion by way of nickel. Nat. Nanotechnol. 17, 1258–1264 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Qi, J. et al. Stacking‐managed development of rBN crystalline movies with excessive nonlinear optical conversion effectivity as much as 1%. Adv. Mater. 36, 2303122 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Cao, Y. et al. Correlated insulator behaviour at half-filling in magic-angle graphene superlattices. Nature 556, 80–84 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cao, Y. et al. Unconventional superconductivity in magic-angle graphene superlattices. Nature 556, 43–50 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ahn, S. J. et al. Dirac electrons in a dodecagonal graphene quasicrystal. Science 361, 782–786 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Park, H. et al. Remark of fractionally quantized anomalous Corridor impact. Nature 622, 74–79 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang, L. et al. Correlated digital phases in twisted bilayer transition metallic dichalcogenides. Nat. Mater. 19, 861–866 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ciarrocchi, A., Tagarelli, F., Avsar, A. & Kis, A. Excitonic units with van der Waals heterostructures: valleytronics meets twistronics. Nat. Rev. Mater. 7, 449–464 (2022).

    Article 

    Google Scholar
     

  • Xin, Ok., Wang, X., Grove-Rasmussen, Ok. & Wei, Z. Twist-angle two-dimensional superlattices and their utility in (opto) electronics. J. Semicond. 43, 011001 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Schmidt, H., Rode, J. C., Smirnov, D. & Haug, R. J. Superlattice constructions in twisted bilayers of folded graphene. Nat. Commun. 5, 5742 (2014).

    Article 
    PubMed 

    Google Scholar
     

  • Ribeiro-Palau, R. et al. Twistable electronics with dynamically rotatable heterostructures. Science 361, 690–693 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Gao, J. F., Yip, J., Zhao, J. J., Yakobson, B. I. & Ding, F. Graphene nucleation on transition metallic floor: construction transformation and function of the metallic step edge. J. Am. Chem. Soc. 133, 5009–5015 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wu, Y. P. et al. Development mechanism and managed synthesis of AB-stacked bilayer graphene on Cu–Ni alloy foils. ACS Nano 6, 7731–7738 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yan, Z. et al. Giant hexagonal bi- and trilayer graphene single crystals with diversified interlayer rotations. Angew. Chem. Int. Ed. 53, 1565–1569 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Pezzini, S. et al. 30 degrees-twisted bilayer graphene quasicrystals from chemical vapor deposition. Nano Lett. 20, 3313–3319 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Deng, B. et al. Interlayer decoupling in 30 levels twisted bilayer graphene quasicrystal. ACS Nano 14, 1656–1664 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lu, C. C. et al. Twisting bilayer graphene superlattices. ACS Nano 7, 2587–2594 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Solar, L. Z. et al. Hetero-site nucleation for rising twisted bilayer graphene with a variety of twist angles. Nat. Commun. 12, 2391 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen, Y. C. et al. Direct development of mm-size twisted bilayer graphene by plasma-enhanced chemical vapor deposition. Carbon 156, 212–224 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Zheng, H. et al. Sturdy interlayer coupling in twisted transition metallic dichalcogenide Moiré superlattices. Adv. Mater. 35, 2210909 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Zhao, Y. et al. Supertwisted spirals of layered supplies enabled by development on non-Euclidean surfaces. Science 370, 442–445 (2020). This research presents a normal mannequin for the expansion of layered supplies with screw-dislocation spirals on non-Euclidean surfaces, leading to repeatedly twisted homostructures.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang, L. M. et al. Three-dimensional spirals of atomic layered MoS2. Nano Lett. 14, 6418–6423 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Fan, X. P. et al. Controllable development and formation mechanisms of dislocated WS2 spirals. Nano Lett. 18, 3885–3892 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Liu, Y. et al. Helical van der Waals crystals with discretized Eshelby twist. Nature 570, 358–362 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang, Z.-J. et al. Conversion of chirality to twisting through sequential one-dimensional and two-dimensional development of graphene spirals. Nat. Mater. 23, 331–338 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Xia, Y. et al. 12-inch development of uniform MoS2 monolayer for built-in circuit manufacture. Nat. Mater. 22, 1324–1331 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Malekpour, H. et al. Thermal conductivity of graphene with defects induced by electron beam irradiation. Nanoscale 8, 14608–14616 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhong, J.-H. et al. Quantitative correlation between defect density and heterogeneous electron switch fee of single layer graphene. J. Am. Chem. Soc. 136, 16609–16617 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Edelberg, D. et al. Approaching the intrinsic restrict in transition metallic diselenides through level defect management. Nano Lett. 19, 4371–4379 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Qiu, H. et al. Hopping transport by way of defect-induced localized states in molybdenum disulphide. Nat. Commun. 4, 2642 (2013).

    Article 
    PubMed 

    Google Scholar
     

  • Bertoldo, F. et al. Intrinsic defects in MoS2 grown by pulsed laser deposition: from monolayers to bilayers. ACS Nano 15, 2858–2868 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Torsi, R. et al. Dilute rhenium doping and its influence on defects in MoS2. ACS Nano 17, 15629–15640 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang, Y. et al. Digital construction, floor doping, and optical response in epitaxial WSe2 skinny movies. Nano Lett. 16, 2485–2491 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Addou, R. & Wallace, R. M. Floor evaluation of WSe2 crystals: spatial and digital variability. ACS Appl. Mater. Interfaces 8, 26400–26406 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lee, Y. H. et al. Synthesis of large-area MoS2 atomic layers with chemical vapor deposition. Adv. Mater. 24, 2320–2325 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kim, Ok. Ok. et al. Synthesis of monolayer hexagonal boron nitride on Cu foil utilizing chemical vapor deposition. Nano Lett. 12, 161–166 (2012).

    Article 
    PubMed 

    Google Scholar
     

  • Zhu, J. et al. Low-thermal-budget synthesis of monolayer molybdenum disulfide for silicon back-end-of-line integration on a 200 mm platform. Nat. Nanotechnol. 18, 456–463 (2023). This work studies the low-temperature MOCVD development for 8-inch MoS2, facilitating a direct integration of MoS2 transistors with silicon complementary metallic–oxide–semiconductor circuits.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Reina, A. et al. Giant space, few-layer graphene movies on arbitrary substrates by chemical vapor deposition. Nano Lett. 9, 30–35 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Shi, Y. et al. Synthesis of few-layer hexagonal boron nitride skinny movie by chemical vapor deposition. Nano Lett. 10, 4134–4139 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tune, L. et al. Giant scale development and characterization of atomic hexagonal boron nitride layers. Nano Lett. 10, 3209–3215 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang, X. S., Feng, H. B., Wu, Y. M. & Jiao, L. Y. Managed synthesis of extremely crystalline MoS2 flakes by chemical vapor deposition. J. Am. Chem. Soc. 135, 5304–5307 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhao, P. et al. Equilibrium chemical vapor deposition development of Bernal-stacked bilayer graphene. ACS Nano 8, 11631–11638 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Uchida, Y. et al. Managed development of large-area uniform multilayer hexagonal boron nitride as an efficient 2D substrate. ACS Nano 12, 6236–6244 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • RELATED ARTICLES

    LEAVE A REPLY

    Please enter your comment!
    Please enter your name here

    Most Popular

    Recent Comments